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Synopsis of the Thesis

Criticality in the sense of power-law decay of distributions of fluctuations and correlations is ubiq-

uitous in systems we call complex. These systems are essentially composed of many interacting

units and are in general in out of equilibrium states. There are other properties, like formation

of self similar structures over all length scales, which are found to emerge in such systems. Equi-

librium systems like liquid-gas or magnets show similar behavior near phase transitions achieved

by fine tuning of temperature. However, in general, in complex systems any external control is

absent. During past few years we have investigated the nature of complexity and hence criticality

in systems whose study became popular in the last couple of decades using different methods and

models in non-equilibrium statistical mechanics. In this thesis we report the kind of progress that

we have made in studying the properties of some of such systems which fall under the following

three broad topics:

1. Complex Networks: International Trade Network.

We analyzed the world economy as a complex weighted network where concepts of critical

phenomena, namely scaling and universality are argued to be applicable. Using a detailed analysis

of the real data of the International Trade Network (ITN) we argued that the scaled link weight

distribution has an approximate log-normal distribution which remains robust over a period of

53 years (from the year 1948 to the year 2000). Another universal feature was observed in the

power-law growth of the total trade with gross domestic product, the exponent being similar for

all countries.

We also developed a prescription to quantify the rich-club effect in weighted networks by

building the proper random ensemble. Although, using the rich-club coefficient, it is difficult to

extract non-trivial correlations due to the high link density, we probed the ITN with other measures

relevant to weighted networks which showed that the size of the rich-club, whose members trade

among themselves half of the world’s trade, is actually shrinking with time. While the Gravity law

is known to describe well the social interactions in the static networks of population migration,

international trade, etc, here for the first time we studied a non-conservative dynamical model

based on the Gravity law which excellently reproduced many empirical features of the ITN.

Further we investigated the properties related to the largest communities (in our definition

this is the largest clique that a node belongs to) in the ITN as it has evolved over the years.

Identification of these largest cliques is NP-hard, but we developed an algorithm which worked
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well for the ITNs for the 53 years. In fact the use of Bootstrap Percolation enhanced the speed

of our searching method. We obtained several results showing the heterogeneity and a scale-free

hierarchy in the structure of the ITN. However we found that the nature of overlap (in terms of

trade) between communities changed drastically from a scale-free nature to a modal one in the

period between 1960 and 1970.

2. Self-organized Criticality: Modeling of earthquakes.

The modeling of emergence of criticality from complexity is believed to be possible by the

general approach of self-organized criticality. We chose to study a globally driven self-organized

critical model of earthquakes with conservative dynamics. We introduced an open but moving

boundary condition so that the origin (epicenter) of every avalanche (earthquake) is at the center

of the system.

This moving boundary removed the heterogeneity that is introduced by working with

a open but fixed boundary. As a result, all avalanches grew in equivalent conditions and the

avalanche size distribution obeyed finite size scaling in an excellent fashion. The recurrence time

distribution of the time series of avalanche sizes from our model obeyed well both the scaling

forms, by Bak et al. and Corral, observed in analysis of the real data of earthquakes. However,

we found that the scaling function in our model decays only exponentially in contrast to the

generalized gamma distribution observed in the real data analysis. The non-conservative version

of the model showed periodicity even with a open boundary.

3. Econophysics: Wealth distribution in societies.

It is well known that the distributions of wealth and income of individuals in societies

follow a definite pattern. The nature of distribution in the high income regime is a power-law

decay. This behavior is known as the Pareto law. The distribution in the low and middle-income

range is, however, found to be described by distributions like log-normal or exponential. There

are several asset exchange models which try to simulate the above behavior. The distribution of

wealth in such a model evolves through pairwise interactions between agents.

We obtained detailed and large scale simulation results on the wealth distribution model

with quenched saving propensities which unearthed a number of crucial features of this model

which were not known before. Unlike other wealth distribution models where the saving propen-

sities are either zero or constant, this model was not found to be ergodic and self-averaging.

The wealth distribution statistics with a single realization of quenched disorder was observed to

be significantly different in nature from that of the statistics averaged over a large number of

independent quenched configurations. The peculiarities in the single realization statistics refused

to vanish irrespective of whatever large sample size was used. We concluded that previously

observed Pareto law is essentially a convolution of the single member distributions.
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1 Introduction to Complex Systems

The subject of physics as it has evolved since the days of Newton has necessarily been reductionist.

That is to say that one observes nature and then tries to isolate laws regarding matter separated

from the environment as well as the initial conditions. And to say the least, physics has been

successful in doing so in very many different areas. To start with, the emphasis of physics was

in studying motion of bodies. The study of dynamics of bodies inspires division of matter itself

into smaller and smaller entities; from atoms to nucleons to quarks and so forth. From the time

when Galileo was able to discover the local law of gravity bypassing the air resistance to the era

of contemporary high-energy physics with much more sophisticated experiments, the hope is to

provide a better description of nature. However, guided mostly by experiments physicists started

describing and studying properties of matter which is constituted not by few but 1023 or more

number of atoms, i.e., bulk matter. Superconductivity and Superfluidity [1], to name only two,

are phenomena which is only to be seen in matter in bulk and totally absent on an atomistic

scale. These type of phenomena are called emergent. Laws have been framed describing such

emergent phenomena by experiments to be verified by theory and vice-versa.

During the 1960’s the framework of renormalization group [2] was greatly successful in de-

scribing another type of emergent phenomena in physics called equilibrium critical phenomena.

For example when the temperature T of a magnet is raised beyond a critical value Tc, its mag-

netization vanishes completely. Near Tc large fluctuations are observed in the magnetization and

other thermodynamic variables describing the state of the magnet. In fact fluctuations of all

sizes are seen and the different variables like susceptibility and specific heat are found to diverge

as power-laws as temperature approaches Tc. Below but near Tc, magnetization itself varies as

a power-law in Tc − T . Another feature near the critical point is self-similarity or scale invari-

ance. Near the critical point the magnet is found to be statistically similar on all scales. The

arrangement of magnetized zones is such that roughness, irregularities and holes are to be found

on all length scales. This sort of pattern in ubiquitous in nature and are called fractals [3]. Now,

systems other than magnets like a liquid-gas coexistence systems also have critical points charac-

terized by power-laws divergences for different thermodynamic variables. However, strikingly all

the exponents of these power-laws for the liquid-gas systems agree (within limits of experimental

accuracy) with the corresponding exponents for the magnets. The behavior near a critical point

is found to be independent of the microscopic details of the system. This similarity in behavior
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is called universality such that the magnets and the liquid-gas systems are said to belong to the

same universality class.

Criticality, in the sense of fluctuations at all length scales and other scale invariant behavior like

fractality, however, is not unique to systems of magnets or liquid-gases. These sort of phenomena

is found to develop in systems outside the realm of equilibrium critical phenomena; and not only in

physics but ubiquitous in different other fields like geophysics [4], biology [5], social sciences [6],

linguistics [7], and finance [8]. Firstly, let us consider geophysics. The magnitude of an earthquake

is measured as the logarithm of the energy released. Very small earthquakes are taking place

almost continuously due to the motion and friction between the tectonic plates in continental

drift. But at times the energy released is huge and such earthquakes (with magnitude seven or

more) cause serious damage and are catastrophic. Concentrated study is done on specific large

earthquakes and their fault zones to theorize their behavior. However, a more holistic description

of earthquakes is the Gutenberg-Richter law. Sampling over energies of earthquakes in a given

region and time period reveals that number of earthquakes of energy at least E follows the

power-law ∼ E−b where b is a constant. The values of b obtained from observations in different

parts of the world are found to be near unity.

Phenomena which scale with volume(V ) or mass(M) in three dimensional Euclidean space

have exponents which are multiples of 1/3, e.g., linear dimensions scale as V 1/3 and surface areas

scale as V 2/3. However, different biological traits are found to scale with body mass M1/4 [9].

For example, diameter of tree trunks and aortas scale as M3/8 and rates of cellular metabolism

and heartbeat scale as M−1/4. The assumption of the 1/3 scaling exponent does not hold good in

biology because the metabolic processes of different organisms rely on the hierarchical fractal-like

nature of resource distribution networks. Examples include the macroscopic branching vascular

networks of plants and animals and the complicated structure within cells. Although these

networks may give rise to the quarter-power scaling but then the occurrence of these networks

poses the question that how the fundamental processes conspire to produce such patterns among

widely diverse forms of life.

Power-laws are also observed to emerge in different aspects of human behavior. For example

distribution of population of cities. George Kingsley Zipf made an in depth study of such sit-

uations. These type of distributions are commonly known as Zipf’s laws [6, 10]. For example

distribution of population of cities is found to be a power-law. Historically it is seen that old cities

grow in size, new cities built up and people migrate from one city to the other and from villages

to cities. However why this type of dynamics gives rise to a power-law i.e., scale-free, population

distribution and not a distribution where there is a characteristic scale for population about which

the population of cities fluctuate, is not yet known. Such an holistic law has also emerged in the

study of different languages. The Internet [11], which is the network of computers all over the

world shows a power-law in the number of connections of a computer (with other computers). In
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the end of 19th century Italian economist Vilfredo Pareto [12] made the observation of inequality

of the income distribution. His study revealed that the wealth and income (w) of individuals

follow a power-law P (w) ∼ w−(1+ν) where ν is close to 1.5. Later, however, it was found that

only the distribution for the high income group was a power-law where the value of ν was between

2 and 3. The income distribution for the USA revealed ν to be 1.8 whereas for Japan it was

found to vary between 1.8 − 2.2. This type of behavior is known as Pareto law.

Such diverse natural and artificial systems, composed of many different components, which

interact among themselves and with the environment, are called complex systems [13]. We are

interested mostly in those systems where we find empirical statistical regularities, like criticality;

and we intend to employ statistical physics [14] to understand and describe some of such systems,

mostly because of it’s success in equilibrium systems. However, before attempting to explain their

behavior of complex systems using physics several questions need to be answered. But first, we

try to figure out what are the common features of complex systems other than the emergent

properties. Firstly, we find they are all way out of equilibrium. For example finance markets

where signatures of power-laws and scale invariance have been found. These markets drive other

markets and influence regional and global economic systems. Finance markets evolve under

the action of trading agents. Such agents participating in trading activities constantly learn

and acquire knowledge from their past successes and failures; and influence the market through

different actions at different points of time. Therefore such systems evolve continuously. These

are reflected in the nature of fluctuations in the time series for the markets’ indices. Such time

series show signatures of non-stationarity. And in fact a time series for the energy releases by

earthquakes in a given region shows very similar behavior. System like the earth’s crust which

causes earthquakes changes with time. The Internet grows every minute as does the biological

networks embedded in different living organisms which evolve and grow during their life spans.

Another common feature of these systems is the absence of any tuning parameter responsible for

their criticality as compared to a parameter like temperature or pressure in equilibrium critical

phenomena.

The motivation for studying complex systems, in the sense of mathematical modeling was

historically rooted in conventional goals of physics. In physics when we observe and analyze a

phenomena we ideally try to frame a dynamical equation, essentially a law like Newton’s law of

gravity or an equation for the probability (of some dynamical variable) like the diffusion equation,

and try to solve them either exactly or numerically to understand how the system evolves in time.

More clearly we are interested to know the exact future state of the system or at least, in the

probabilistic picture, make predictions about the future. However, is this approach relevant in

case of complex systems? This question is crucial because laws of physics can be seen to hold

good at any place on the earth by performing experiments and in general at any place in the

universe from astronomical observations. However, not all countries [15] have power-law income
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distributions and therefore Pareto law is not universal as Newton’s laws are. Here we must

keep this in mind that Pareto law is a holistic description unlike the microscopic description in

Newton’s formalism. However, when we aim to model a complex system using statistical physics

we also need guidance regarding the microscopic behavior of the system, for example how the

components interact between themselves. In a gas at 300K (say) the molecules continuously

collide with each other and with the walls of the container and at a microscopic level governing

principle is Newton’s laws of motion. Therefore, we encounter the question that whether in

principle such laws can exist in such complex systems and even if they do, can we extract them

when the system is constantly interacting with the environment.

The questions raised above become more relevant when we have socio-economic systems in

mind. For example the traders mentioned above. These traders are in fact influenced by other

political and economic affairs around the globe. They are rational in the sense they make willful

decisions. In the real-world, assigning any model behavior to such a rational agent is difficult

because he or she is potentially capable of violating it any moment if he chooses to. Certain

approaches in the modeling of complex systems allow us to tackle such problems. For example the

assumption of “bounded rationality” [16, 20] and the careful identification of important factors

can shrink the set of options of each agent in the model. With such assumptions in mind we try

to study and model complex systems. The models are considered successful if they are able to

reproduce the macroscopic features of the real system especially statistical distributions.

In this thesis we investigate three problems which belong to three broad areas in complex

systems viz. complex networks [18, 19], self-organized criticality [20, 21] and econophysics

[8, 17]. In the following we provide a brief introduction to these topics and try to explain how

tools of statistical physics are employed within this areas to tackle the problems in complex

systems.

1.1 Complex Networks

To analyze the structure and function of some complex systems mentioned above it has been found

to be useful to model them as networks. While networks form a very natural way of understanding

structures like electric power grids [22], the Internet [23] or river basins [26] it can be used to

study other systems like acquaintances between individuals in the society, the interdependence

of living organisms on each other, namely food webs [24, 25] or the trade relations [27] between

different countries. Traditionally the study of networks has been a branch of mathematics called

graph theory. In the jargon of graph theory a graph(network) consists of a set of entities called

vertices (also called nodes) and a set of connections between them called edges (also called links).

It is believed that graph theory started with the study [28] of a network of bridges around the city

of Königsberg by Leonhard Euler in early 17th century. In addition to these, study of networks
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Figure 1.1: The representation of (a) an undirected, (b) a directed and (c) a weighted graph
with N = 7 nodes and L = 8 links. The arrow-heads in (b) indicate the direction of the links. The
thicknesses of the links in (c) represent the values of the weights associated with the links.

was also carried out by social network analysts since early the 20th century.

About a decade ago, graph theory mainly focused on properties of individual nodes and links

in small networks consisting of few hundred nodes; it is only recently the approach has changed.

This has been triggered by scientists looking at networks of millions of nodes. Presently the focus

is on studying statistical properties in these huge networks. In fact, after two seminal papers,

one by Watts and Strogatz [22] and the other by Barabási and Albert [29], successfully modeled

different emergent properties of large real-world networks, there has been a flurry of activity in

this field.

A graph or a network G(V, E) consists of two sets of elements, V = {v1, v2, v3, ..., vN} and

E = {e1, e2, e3, ..., eL} such that each element ek in the set E corresponds to a unique pair of

elements (vi, vj) of the set V [30–32]. The elements of the set V are called nodes or vertices

(N in number) and the elements of the set E are called links or edges (L in number). More

precisely this is the definition of an undirected graph. Graphs can also be directed. In case of

directed graphs, each element ek in E corresponds to a unique ordered pair of elements (vi, vj)

of V. However, in this thesis, and to be particular in Chapter 2, we deal with only undirected

graphs. The Fig. 1.1(a) and Fig. 1.1(b) shows the examples an undirected graph and a directed

graph, respectively.

A graph can be represented accurately using some matrices. For example a graph can be

completely enumerated by defining its adjacency matrix. For a network with N nodes, its

adjacency matrix A is a N × N square matrix whose element ai,j = 1 (i, j = 1, ..., N) if there

is an edge between the vertices vi and vj , otherwise aij = 0. If the network is undirected, A is a

symmetric matrix. In the following, we list some properties of networks as measurables in terms

of the adjacency matrix.
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1.1.1 Nodal Degree

The degree of a node is the total number of links that meet at this node. Therefore the degree

ki of a node i is given by:

ki =
∑

j∈V

aij . (1.1)

For a node in a directed network the in-degree kin
i i.e., the number of incoming links, and the

out-degree kout
i i.e., the number of outgoing links, may be defined separately so that total degree

is ki = kin
i + kout

i .

1.1.2 Degree Distribution

In all real-world networks and in associated graphs [19, 29, 33] the degree distribution has turned

out to be a primary quantity for characterization of networks. The degree distribution P (k) is

the probability that a randomly selected node has degree k. For a given network it is calculated

as:

P (k) =
N(k)

N
, (1.2)

where N(k) is the number of nodes with degree k.

1.1.3 Clustering Coefficient

This quantity is one measure of local correlations [22, 33] in a network. From the perspective of

social networks it quantifies the likelihood that if A and B are friends, as are B and C then A and

C are also likely to be friends of each other. The clustering coefficient ci at a particular node

i is thus the ratio of actual number of triangles ei connected to the vertex i to the maximum

number of such triangles possible. If i has the degree ki and ei is the number of links actually

that exists among the ki neighbours where the maximum number possible being ki(ki − 1)/2,

then

ci =
2ei

ki(ki − 1)
=

∑

jm aijaimajm

ki(ki − 1)
. (1.3)

For a node which has only one or no neighbour ci is set to zero. The clustering coefficient for

the whole network is given by averaging ci over all nodes:

C =
1

N

∑

i∈V

ci. (1.4)

From the definitions it follows 0 ≤ ci, C ≤ 1. Often a quantity which can be calculated for

individual nodes in a network is also expressed as a function of the degree. Thus in addition to

ci we can determine c(k) which is the average clustering coefficient of all nodes having degree k:

c(k) =

∑

i∈V ciδki,k

N(k)
. (1.5)
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This forms a useful tool in exploring the hierarchical structure present in many real-world networks

[34].

1.1.4 Shortest Paths and Diameter

These concepts are important for studying transport processes of any form taking place on the

network. Examples are flow of data packets in the Internet [11] and the passenger traffic through

railways connecting cities [35] or the traffic within cities themselves [36]. The concept of traversal

along a network is as follows. To travel from one node i to another node j we need to hop along

the network from one node to an adjacent node and likewise, starting at i until we reach the

destination j. The sequence of nodes that we traverse in the process (excluding i and j) constitute

a particular path from i to j. If the number of nodes in this sequence be nij then nij + 1 will be

the length of the path. There can be in principle many different paths between any two nodes i

and j. The path for which nij is the smallest (in general there can be more than one) is called

the shortest path. Thus if i and j are adjacent nodes then the shortest path is just a hop from

i to j with the path length being unity (nij is zero).

The diameter of a network is defined as the largest of all possible shortest paths on the network

i.e.,

D = max
i,j∈V

{nij} + 1. (1.6)

In case there are disjoint clusters in the network, the diameter of the network may be taken to

be diameter of the largest cluster.

1.1.5 Betweenness Centrality

Betweenness Centrality is a quantity which highlights the importance of a node with respect

to the global topology of the network. It is the number of shortest paths that pass through

a particular node. Historically, the concept of betweenness was in fact introduced in the field

of sociology [38, 39] . From the viewpoint of social networks [40, 41], the higher betweenness

centrality of an individual the more ‘important’ the person is. Also in the study of network traffic,

betweenness centrality becomes relevant. In a network where either information or physical objects

(like vehicles) are traveling [42, 43] from a source node to a destination node via shortest paths

there is high probability of congestion at the nodes with high betweenness centrality.

Mathematically, betweenness centrality bi of a node i is calculated as:

bi =
∑

j,m∈V ,j 6=m

σjm(i)

σjm

, (1.7)

where σjm is the number of shortest paths that exist between node j and node m, out of

which σjm(i) such paths pass through node i. The determination of betweenness centrality by a
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brute-force approach is computationally very expensive and takes up O(n3) CPU-time and O(n2)

storage space. However, the calculation in linear time and with linear space is possible by a ‘fast’

algorithm by Brandes [44]. The concept of edge-betweennness where the the number of shortest

paths passing through an edge is counted, has also been studied [45].

1.1.6 Degree Correlations

When high degree nodes are found to be preferentially attached to high degree nodes or prefer-

entially attach to low degree nodes, the network is said to have degree correlations. One way of

quantifying these correlations is by the means of the conditional probability [23] P (k′|k) that a

vertex of degree k is connected to a vertex of degree k′.

Now average degree knn,i of the nearest neighbour nodes of a node i is given by:

knn,i =
1

ki

∑

j∈V

aijkj. (1.8)

This quantity when expressed as the function of degree, i.e., knn(k) can be expressed as:

knn(k) =
∑

k′

k′P (k′|k). (1.9)

For real-world networks, where due to effects of finite size, measuring the correlation function

P (k′|k) becomes difficult, one resorts [23] to knn(k). In case of uncorrelated network, knn(k)

is independent of k. When knn(k) rises with k it implies high degree nodes are preferentially

attached to high degree nodes. Such networks are called assortative. When knn(k) decreases

with k it implies nodes with vastly different degree values are preferentially linked. Such networks

are called disassortative. It is a general observation [33, 46, 47] that almost all social networks,

for example the Physics co-authorship network[48], appear to be assortative while other type

of networks like biological networks like the protein-protein interaction network in the yeast S.

Cerevisiae [49]; or technological and information networks like the network of hyperlinks between

pages in the World Wide Web domain [50] appear to be disassortative. More examples of such

real-world networks can found in reference [47].

Weighted Networks

Till now we have investigated networks in terms of their structure which is enumerated in terms of

presence and absence of links amongst the nodes. However, a finer description is possible which

is the weighted networks [51] picture. Neither all the ties between individuals in a social network

are of same strength [52–56] nor is the passenger traffic in a airlines network homogeneous

[34, 57–59]. There are many similar examples of networks where there is strong heterogeneity in
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the strengths of the links. The weight of a link is a measure of the strength of that link. For

example, in a airlines network a link between two airports (nodes) is assigned a weight equal to

the number of passengers commuting [34] along the link. The larger the weight along a link, the

more important is its control on the properties of the network.

Most of the measures that are available for unweighted networks can be generalized to weighted

networks. The natural generalization of the adjacency matrix A is the weights matrix W whose

entry wij is the weight of the link between node i and node j. The Fig. 1.1(c) shows a

representation of a weighted graph. We list below few quantities [60] pertinent to weighted

networks in general and to the analysis done in Chapter 2, in particular. These are generalizations

of the measurables defined above with respect to unweighted networks.

1.1.7 Nodal Strength

This quantity [34, 61] is the generalization of degree ki of a node i for weighted networks. The

node strength si is given by:

si =
∑

j∈V

wij. (1.10)

The strength when expressed as a function of the degree i.e., the function s(k) gives a measure

of weight-topology correlation in the network. If the weights are distributed on the network

independent of the topology then on the average, s(k) ≃ 〈w〉k. However, in the presence of

non-trivial correlations one obtains s(k) ∼ kβ with β 6= 1. For example, in the world-wide airport

network (WAN) [34] β is found to be 1.5.

1.1.8 Weighted Clustering Coefficient

The weighted clustering coefficient cw
i of a node i is given by:

cw
i =

1

si(ki − 1)

∑

j,m∈V

wij + wim

2
aijaimajm. (1.11)

This quantity [34] is designed so as to give relatively more importance to those triangles which

are incident on the node i with larger weights and cw
i reduces to ci in case all the weights are

equal. The normalization factor si(ki − 1) ensures that 0 ≤ cw
i ≤ 1.

1.1.9 Weighted Average Nearest Neighbour Degree

The assortative or disasortative nature of weighted networks is examined by means of the weighted

average nearest neighbour degree kw
nn(i) of a node i. It is defined [34] as:

kw
nn(i) =

1

si

∑

j∈V

aijaimwijkj. (1.12)
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The variation of kw
nn(k) with degree k points to the nature of correlations in a weighted network.

1.2 Self-organized Criticality

Beginning in the sixties with the investigations by Benoit Mandelbrot, the presence of fractal

patterns in nature started becoming evident. Mandelbrot made the general observation that in

most geological structures like mountain ranges, coastlines, river networks, fjords, etc, a part is

statistically similar (this fact is also evident from the visual appearance) to the whole pattern. He

made the proper characterization of such objects by the means of non-trivial, non-integral fractal

dimensions [3, 62]. For example when the mass M(R) of an object of physical size R varies as

M(R) ∼ Rdf , df is known as the fractal dimension of the object.

However, it is not always the case that the fractal behavior is in the spatial structure itself

but is manifested by the power-law relationship between two physical observables. An example is

the Gutenberg-Richter law which we have already discussed above. Similar behavior is observed

in the phenomenon of rainfall where a power-law dependence of the frequency of rainfall on the

intensity has been found [63]. There are many other phenomena which show irregular bursts of

large activity and we discuss some such systems in the section 1.3 The time series corresponding

to such systems have power-law tails in their power spectra i.e., S(f) ∼ f−β, where the exponent

β has been found to be near unity at low frequencies. Examples [64, 65] include electrical noise,

intensity variation of light from stellar objects, stock market price variations etc.

Bak, Tang and Wiesenfeld (BTW) first argued in favour of a unified framework for the different

phenomena mentioned in the above paragraphs. They suggested that there is a self-organization

built in the dynamics of such systems, which are all in non-equilibrium steady states. This

gives rise to the scale invariance of the spatial and temporal correlation functions similar to that

observed in equilibrium critical phenomena. However, here it is without the fine tuning of a

control parameter. They called this sort of phenomena self-organized criticality (SOC). BTW

suggested that a sandpile should be the simplest possible system exhibiting SOC.

1.2.1 The Bak, Tang and Wiesenfeld sandpile model

In their original paper [66] Bak, Tang and Wiesenfeld described this cellular automaton model

of a sandpile. In a simple possible version the BTW model is defined on finite square lattice

of size L × L. This lattice represents a flat surface on which sand is dropped very slowly and

sandpile growth takes place. A non-negative integer zij is associated with every lattice site (i, j),

representing the height of sand column at that site measured by the number of sand grains.

The rules for evolution of this model sandpile are as follows. Starting with an arbitrary initial

configuration, specified by the heights of sand at every lattice site, sand grains are added at
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Figure 1.2: Illustration of an avalanche in the BTW sandpile model. The addition of a grain at a
site with height z = 3 leads to an avalanche of size s = 5 and time duration T = 4.

randomly selected sites thus increasing the heights of sand columns at those sites. Thus when

one unit of sand is added to a site (i, j), the height of the column zi,j at (i, j) increases by unity:

zi,j → zi,j + 1. (1.13)

However, when the height of the column at a site (i, j) increases beyond a critical height zc = 3

(the numerical value of zc assigned here is without the loss of generality) the column becomes

unstable. As a result toppling occurs and the site (i, j) relaxes by losing zc + 1 = 4 grains of

sand:

zi,j → zi,j − 4, (1.14)

whereby each of the four neighbours of (i, j) gains one unit of sand:

zi±1,j → zi±1,j + 1, zi,j±1 → zi,j±1 + 1. (1.15)

In many situations it happens that some of the neighbouring sites have sand column heights

equal to zc before they receive the sand grains due to toppling of the site (i, j). In such a case,

these sites become unstable and they themselves topple. The toppling of all unstable sites in the

neighbourhood are carried out in parallel. Eventually these topplings may lead to other topplings.

Thus the system relaxes through a cascade of topplings of sand columns when the addition of a

single sand grain to the system makes a column unstable. A cascade terminates when all sites on

the lattice are stable. Such a relaxation process in termed as an avalanche. Now, the toppling at
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a lattice site which is at the boundary of the system causes the loss of a sand grain because the

grain falling outside the lattice is removed from the system. Thus constant inflow of sand grains

into the system and the simultaneous dissipation at the boundaries ensures that all avalanches

have finite life time and that the system passes through non-equilibrium stationary states.

One of the ways of quantifying the size of an avalanche is by counting the total number s of

topplings in the avalanche. The life time T of an avalanche is the duration over which unstable

sites are found in the system. These facts are illustrated in Fig. 1.2 where a 4 × 4 lattice is

shown, on which the addition of a sand grain causes an avalanche of size s = 5 and duration

T = 4. The probability distribution of avalanche sizes is characterized by a power-law tail. This

is the signature of the long-range spatio-temporal correlations and hence criticality in the system.

If D(s) be the probability of occurrence of an avalanche of size s, then:

D(s) ∼ s−τ . (1.16)

When one probes the motion of a sand grain that leaves the system after its entry it is found

to be diffusive in the sense that a toppling at a site results in its distribution to all the four

neighbours of that site with equal probability. Since on the average a grain requires to traverse

a distance L on the L × L lattice to reach the boundary it accomplishes it in order L2 steps.

Therefore during the steady state when for every grain added one grain has to leave through the

boundary, the system accomplishes it by L2 topplings on average. This provides an estimate for

〈s〉:
〈s(L)〉 ∼ L2. (1.17)

1.2.2 Finite size scaling of avalanche size distributions

The power-law for the avalanche size distribution D(s) given in Eq. (1.16) has a cut-off at a

value s = sc after which the decay is much faster. The cut-off is governed by the system size L

as:

sc(L) ∼ Lν . (1.18)

It is generally assumed that the avalanche size distribution in a system of dimensions L obeys

standard finite size scaling ansatz [67–69]:

D(s, L) ∼ s−τD(s/Lν) (1.19)

where the scaling function D(y) ∼ constant for y → 0 and D(y) approaches zero very fast for

y ≫ 1. However, the values of the different exponents like τ and ν have still not been ascertained

[70].

The BTW sandpile model is a prototype model of a system exhibiting the phenomenon of

SOC. The sand grains can also be identified with energy, pressure, force, etc. as we will find out
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in the Chapter 3. There are also many other models of SOC which are different from the BTW

sandpile model. References to these models can be found in [70].

1.3 Econophysics

We borrow the definition of econophysics from the Encyclopedia of Quantitative Finance where

[71] it has been proposed to be the “multidisciplinary study of complex large-scale financial and

economic systems”. However, in essence it has been the application of concepts from physics to

investigate correlations and statistical regularities in distributions of different quantities which are

relevant from the point of view of economics and finance. Such quantities include fluctuations

in stock prices, foreign exchange quotes and gross domestic product of countries.

The quantities mentioned above are measurables belonging to very complex socio-economic

systems. We have already discussed the case of finance markets in the previous paragraphs. It is

arguable to an extent that whether physics, which is successful in modeling of inanimate matter,

can be effective in probing such systems. In fact from the viewpoint of statistical physics it is

also interesting to search for evidences of universal behavior.

The studies in econophysics are also greatly enhanced and facilitated by the huge amount of

data that has become available presently. Essentially, the type of data that is obtained from

the financial markets are time series data. The data contains the logarithm of price of some

commodity, varying with time. Historically, the modeling of such time series was one of the

pioneering contributions from the field of physics to finance. In 1959, M.F.M. Osborne modeled

the time series for stock prices as a geometric Brownian motion [72]. This model predicted that

the distribution of logarithmic price changes to be a log-normal. However, Mandelbrot in 1963

[73] showed that the distribution of price changes decays as a power-law with an exponent close to

2.7. From then on investigations by different groups into time series’ have demonstrated evidence

of scaling and data collapse of distributions of different market related quantities [8, 74]. The

subtlety in the nature of correlations in such time series and the non-stationarity of increments

has also been explored [75].

The evidence of power-laws and scaling have prompted the research in econophysics to draw

parallels between systems of market agents with systems like magnets and fluids which show

such behavior at the critical point during phase transitions [76]. From a different point of view

the absence of any control parameter, like temperature, in economic systems have encouraged

modeling in the paradigm of self-organized criticality [77]. We have already introduced this

general approach of self-organized criticality in section 1.2.

The models of statistical physics that are successful in simulating the behavior materials at

criticality have been applied to model markets. In a very simplified picture consisting of trading

agents where the trading volume is not considered and only the options of a trader i.e., to buy
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or sell or to stay out of market are considered, modeling has been possible on the lines of Ising

and Potts spin sytems [14]. Such models are in general called agent-based models. In Chapter

4 of this thesis we consider some such models. The aim is to simulate the wealth distribution in

societies which is the Pareto law, mentioned earlier. Here, however, the parallel is drawn between

the members in a society with a system of gas molecules which interact with each other and

exchange energy.

1.4 Plan of the Thesis

In the previous sections we have defined and described the various methods and tools as briefly

as possible, in three broad areas which deal with complex systems. In the next three chapters we

analyze the particular problems. In Chapter 2 we analyze international trade in the framework of

complex networks, in Chapter 3 we examine how earthquakes can be modeled in the paradigm of

self-organized criticality and in Chapter 4 we study about the modeling of wealth distributions in

societies which is a problem that eonophysics deals with.



2 The International Trade Network:

weighted analysis and modeling

2.1 Introduction

In Chapter 1 we have seen how the inequality in the distribution of wealth of individuals in a

particular society or within a country gives rise to a Pareto tail for the distribution function.

We will look into the detail of this problem in Chapter 4. Here however, we try to observe this

scenario at a different scale. Individuals make up a society, societies constitute a country and

countries make up the global society or world economy. Buying of goods or services by agencies

(government and non-government) within one country from similar agencies in another country

constitute a trade link between the two countries. Such bilateral trade ties, according to modern

economic theory [78], are considered mutually advantageous and give rise to an international

market. While a country which produces and sells different commodities and services, i.e., exports

to other countries, has a purpose of making profit in this market to strengthen its own economy, a

country may buy i.e., import such commodities with the purpose of meeting it’s internal demands

or for production of other salable commodities. These trading activities give rise to cooperation

as well as competition between countries. Countries become dependent on each other as well

as engage in conflict. Since every country participates in trade and due to the fact that each

country is strongly interrelated with other countries via trade, the economy and politics of one

country affects the economy and politics of others and vice-versa. One way to probe into such

a complex organization of countries is to describe the system as a complex network where the

countries are the nodes and trade channels between them are edges. This is what we call the

International Trade Network (ITN).

In the last century the political scenario of the world has gone through revolutionary changes.

These changes have influenced and shaped world trade and commerce. Major influential events

include the World War I (1914-1918), the World War II (1930-1945), the Cold War (1947-1989)

and the eventual dissolution of the Soviet Union (1991). Wars and war like situations have given

rise to competition for market shares in world trade whereas allies in wars have become partners

in trade. Several regional blocs have also emerged in the course of time where the promotion

of trade between member states has been an important issue. Examples of active regional blocs

15
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Figure 2.1: (a) Cumulative distributions of gross domestic products of nations (as fraction of the
total annual GDP) averaged over the ten year periods during 1951-60, 1971-80 and 1991-2000 (from
left to right). The solid line is a guide to the eye and is a power-law with slope -1.

include the NAFTA (1994), consisting of the United States of America, Canada and Mexico, and

the ASEAN (1967) consisting of countries in south-east Asia. However, increasingly, cooperation

in trade is not being confined to regions and this aspect of economic globalization has been an

important factor in the evolution of the ITN.

The ITN, over the years, has grown in size, by the emergence and international recognition of

new nations, as well as become more densely connected by the formation of trade links between

existing countries and strengthening of existing links i.e., increase in amounts of trade in a

link. To quantify strength or weakness of a link, we use the amount of trade measured in US

dollars, which we define below as the weight of the link. Another aspect of the ITN that we

investigate below in detail is the level of heterogeneity. There has always been few key players

in the world trade. These are the countries with high economic strengths. Economic strengths

being measured by the income of nations i.e., the gross domestic product (GDP). The GDP of

a country is defined as the total market value of all final goods and services produced within

the country, generally in a calender year. Broadly, countries are classified into three different

categories. According to the World Bank classification of different countries in July 2005 based

on GDP per capita as mentioned in the human development reports of 2003 [86], high income

countries have GDP/capita at least $9,386, middle income countries have GDP/capita in between

$9,386 and $766 where as low income countries have GDP/capita less than $766.
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Figure 2.2: Variations of (a) the total number of nodes N and (b) the total number of links of the
annual ITN over a period of 53 years from 1948 to 2000.

International trade has been first considered from the network modeling framework in [27].

Here the topological characterization of the ITN for the year 2000 was done. A scale-free degree

distribution and small world property for the network was found. In [81] the fractional GDP’s

of different countries have been looked upon as the ‘fitness’ for the international trade. In this

model links are placed between a pair of nodes according to a probability distribution function of

their fitnesses. In Fig. 2.1 the cumulative distribution function for the GDP of different nations

(as fractions of the total world GDP) has been plotted. The figure suggests that distribution

of GDP has a Pareto tail with exponent −2. Also the trade imbalances between different pairs

of countries, measuring the excess of export of one country to another over its import from the

same country have been studied [82, 83]. This method could define the backbone of the ITN

[82].

2.2 Scheme of Analysis

This chapter is based on our publications [87] and [88]. Here we analyze the ITN as it has evolved

in the time span of 53 years from 1948 to 2000 . In the data [89] annual trade is expressed in

terms of millions of US dollars (M$) of imports and exports between countries i and j using four

different quantities expij, expji, impij and impji. In general the value of export from country

i to country j, expij and the value of import of j from i, impji should be the same yet they

have been quoted differently since exports from i to j and import of j from i are reported as

different flows in the IMF (International Monetary Fund, Department of Trade) data. Although

magnitudes of these quantities are approximately same in most cases, they do differ in many
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Figure 2.3: A subnetwork of the ITN for the year 2000, where only links with the highest 4 % of
weights and the associated nodes (countries) are included [90], yielding in total 80 nodes and 411 links.
The node size is proportional to its strength and link color to its weight. Link weights are defined as
the volume of annual trade between two countries in M$.
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Figure 2.4: (a) Variations of the link density ρ(N,L) and the average clustering coefficient 〈C〉
of the annual ITN over a period of 53 years from 1948 to 2000. (b)Cumulative degree distributions
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next decades, however, power-laws over small regions are observed whose slopes gradually decrease to
−1.74 (indicated by the solid line) for the 1991-2000 plot.

instances due to different reporting procedures followed and different rates of duties applicable

in different countries etc. [91].

Between two countries i and j we denote the amount of export from i to j by wexp
ij , the amount

of import from j to i by wimp
ij and the total trade by wij and define them as:

wexp
ij =

1

2
(expij + impji), w

imp
ij =

1

2
(expji + impij), wij = wexp

ij + wimp
ij . (2.1)

Using these data we construct the International Trade Network for every calender year. Evidently

nodes of the ITN represent different countries in the world. There is a link between a pair of

nodes if there is non-zero amount of annual trade between them. This information is sufficient

when we study the bare topological properties of the ITN for different years. However, here we

move on to the weighted network description. The export wexp
ij is the outward flow from i to j

and the import wimp
ij is the inward flow from j with respect to i. Therefore the ITN is inherently

a directed graph with two opposite flows along a link except cases of few links which have flows

only in one direction. In our study we ignore the direction and define an undirected link between

an arbitrary pair of nodes with a weight equal to the total trade wij between the corresponding

countries.
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Figure 2.5: The variation of average nodal degree 〈k〉 and the largest degree kmax with the size N
of the ITN. The solid lines are power-law fits to the data.

2.3 Topology

We first investigate the evolution of the ITN with respect to the the topological characteristics.

Both the number of nodes N as well as the number of links L in the annual ITN varied from one

year to the other. In fact they had grown almost systematically over the years. For example, the

number of nodes have increased from N = 76 in 1948 to 187 in 2000 (Fig. 2.2(a)), the number

of links have increased from L = 1494 in 1948 to 10252 in the year 2000 (Fig. 2.2(b)) where as

the link density ρ(N, L) = L/[(N(N − 1))/2] fluctuated widely but with a slow increasing trend

around a mean value of 0.52 over this period (Fig. 2.4(a)).

2.3.1 Degree Distribution

The degree k of a node is the number of other countries with which this country has trade

relationships. This can be further classified by the number of countries to which this country

exports and is denoted by kexp where as kimp is the number of countries from which this country

imports. In general kexp 6= kimp but for some nodes they may be the same. To a great extent

the structure of the ITN is reflected in its degree distribution. For the year 2000 this has been

already studied in [27] and [81] in which a power-law for the cumulative distribution P>(k) ∼ k1−γ

has been observed over a small range of k values with γ ≈ 2.6. We have studied the degree
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Figure 2.6: Plot of different topological quantities averaged over the ten year periods during 1951-
60, 1961-70, 1971-80, 1981-90 and 1991-2000: (a) Clustering coefficient as function of degree, and (b)
Nearest-neighbor degree as a function of degree. The solid lines are power-laws with slopes (a) −0.5
and (b) −0.3, plotted as references.

distributions, each averaged over ten successive ITNs, namely, 1951-60, 1961-70, 1971-80, 1981-

90 and 1991-2000. The plots are given in Fig. 2.4(b). We see that indeed a small power-law

region appears for the period 1991-2000 with a value of γ ≈ 2.74. Such a region is completely

absent in the decade 1951-1960. In the intermediate decades similar short power-law regions are

observed with larger values of γ.

We have also studied the average degree of a node 〈k〉 and the maximal degree of a node kmax

for all the 53 years where the size N of the ITN varied. We plot these quantities in Fig. 2.5 using

double-log scale and observe the following power law growths as: 〈k〉 ∼ N1.19 and kmax ∼ N1.14.

Obviously these exponents have the upper bound equal to unity yet they are found out to be larger

than one since both 〈k〉/N and kmax/N ratios have grown slowly with time as time progresses.

This implies that as years have passed not only more countries have taken part in the ITN but

in general individual countries have very rapidly established trade relationships with increasing

number of other countries, a reflection of the economic global liberalization.

2.3.2 Clustering and Nearest-neighbor Degree

The Fig. 2.6(a) shows the plot of clustering coefficient averaged over ten year periods within the

total span of 1951-2000. Here the clustering coefficient is plotted as a function of degree. The

finding is similar to that originally presented in [27]. However, in [27] the clustering coefficient

was only calculated for the year 2000. The power-law decay c(k) ∼ k−ω with ω around 0.5
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Figure 2.7: Plots of (a) the ratio of maximal trade wmax along a link to the total volume of trade
W and (b) the average trade per link 〈w〉of the ITN, over the period from 1948 to 2000.

signifies a hierarchical structure present in the system. The variation of the average clustering

coefficient over the period of investigation can be seen in Fig. 2.4(a). The average clustering

coefficient 〈C〉 is sum of the clustering coefficients Ci for all nodes i of the network divided by

the total number of nodes. If the structure of the ITN was random then 〈C〉 would be equal to

the value of the link density ρ(N, L). However, as seen from the figure, 〈C〉 is about 1.3 times

larger than ρ(N, L). Fig. 2.6(b) shows the plot of average degree of nearest neighbors knn as a

function of degree. The quantity knn(k) is a measure of degree-degree correlations present in the

system. The decaying form of knn(k) also suggests hierarchy where richly connected countries

or hubs provide connectivity to nations with low degrees and also have connections in between

them.

2.4 Weighted Analysis

A huge variation of the volume of the bilateral trade is observed starting from a fraction of a

million dollar to million million dollars. There are large number of links with very small weights

and this number gradually decreases to a few links with very large weights (Fig. 2.3). The tail of

the distribution consists of links with very large weights corresponding to mutual trades among

very few high income countries [86]. The variation of the ratio of maximal trade wmax in a year

to the total world trade W in that year is shown in Fig. 2.7(a). The average weight per link

〈w〉 had also grown almost systematically from 15.54 M$ in 1948 to 308.8 M$ in 2000 (Fig.

2.7(b)). Again W had grown with years from 2.3 × 1010 dollars in 1948 to 3.2 × 1012 dollars in
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2000 (Fig. 2.8).

2.4.1 Weight Distribution

We have studied the distribution of the total trade wij along a link in detail, without distinguishing

between the exports and the imports. We denote Prob(w)dw as the probability to find a randomly

selected link whose weight lies between w and w+dw. In general in a typical ITN, the link weights

vary over a wide range. There are many many links with small weights whose number gradually

decreases to a few links with large weights. In the first attempt we plot the distribution on a

double logarithmic scale as shown in Fig. 2.9(a). Data for the six different years from 1950 to

2000 at the interval of ten years have been plotted with different colored symbols. Each plot has

considerable noise which is more prominent at the tail of the distribution. Yet one can identify

an intermediate region spanning little more than two decades of wij where the individual plots

look rather straight. This indicates the existence of a power-law dependence of the distribution:

Prob(w) ∼ w−τw in the intermediate regime. Therefore we measured the slopes of these plots in

the intermediate region for every annual ITN for 53 years from 1948 to 2000. These values have

fluctuations around their means and our final estimate for the exponent is: τw = 1.22 ± 0.15.

We re-analyzed the same data by trying to fit a log-normal distribution as:

Prob(w) =
1√

2πσ2

1

w
exp

(

− ln2(w/w0)

2σ2

)

, (2.2)

where the characteristic constants constants of the distribution are defined as w0 = exp(〈ln(w)〉)
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Figure 2.9: Trial of power-law and log-normal fits: (a) A double logarithmic plot of the probability
distribution Prob(w) of the link weights for the six different years at the ten years interval from 1950
to 2000. The straight line shows average slope of the intermediate regime of all distributions giving an
average estimate for the exponent τw = 1.22 ± 0.15. (b) Scaled plot of the probability distribution of
the link weights −2σ2 ln[Prob{ln(w)}

√
2πσ2] as a function of ln(w/w0). The five year averaged data

have been plotted for ten different periods from 1951 to 2000. Points scatter around the scaled form
of the log-normal distribution y = x2 evenly except at the ends.

and σ = {〈(ln(w))2〉 − 〈ln(w)〉2}1/2. It is found that different annual ITNs have different values

for w0 and σ. However we observed that one can make a plot independent of these constants.

Given the wij values of an ITN one calculates first w0 and σ. Then calculating the Prob{ln(w)}
one plots −2σ2 ln[Prob{ln(w)}

√
2πσ2] as a function of ln(w/w0) which should be consistent

with a simple parabola y = x2 for all years (Note that Prob{ln(w)}d{ln(w)} = Prob(w)dw

implies Prob{ln(w)} = wProb(w)). This analysis has been done for fifty years for the period

1951-2000 but the data for every successive five years period have been averaged to reduce noise

and ten plots for the intervals 1951-55, 1956-60, ... , 1996-2000 have been plotted in Fig. 2.9(b)

with different colored symbols. We observe that the data points are evenly distributed around the

y = x2 parabola in most of the intermediate region with slight deviations at the two extremes,

i.e., at the lowest and highest values of ln(w/w0). We conclude that the probability distribution

of link weights of the annual ITNs is well approximated by the log-normal distribution and is

a better candidate to represent the actual functional form of the Prob(w) than a power-law.

We mention here that the trade imbalances have also been claimed to follow the log-normal

distribution [82].
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Figure 2.10: Plot of different weighted topological quantities averaged over the ten year periods
during 1951-60, 1971-80, and 1991-2000: (a) Weighted clustering coefficient as function of degree, and
(b) Weighted nearest-neighbor degree as a function of degree.

2.4.2 Weight-topology Correlations

In Fig. 2.10 we plot the weighted clustering coefficient Cw
k and the weighted average degree

of nearest neighbors kw
nn as functions of degree k. We compare these plots to Fig. 2.6 where

the bare topological correlations are plotted. Interestingly, we observe few regularities [36]. It is

found that Cw > C and kw
nn > knn for the entire range of degree values. In addition it is found

that Cw
k is flat unlike Ck which is decreasing, and kw

nn is slightly increasing form. These facts

indicate the presence of very large amounts of trade between high degree nations which in fact

balances the lack of topological correlations.

2.4.3 Giant Component

The ITNs for all the years within our period of investigation are single component graphs. How-

ever, we probe more closely into this aspect of structural organization of the ITN. We investigate

the robustness of the structure from a viewpoint similar to percolation theory [92]. We consider

a process which starts from N nodes but with no links. Links are then inserted between pairs of

nodes with a probability proportional to the weight of the link since a large weight link is more

likely to be occupied than a small weight link. To do this, at first the link weights in the ITN

have been ordered in an increasing sequence. Then the links are dropped in the descending order

of the link weights starting from the maximum weight wmax. We have also studied the reverse

procedure when links are dropped in the increasing sequence of the link weights starting from

the weakest link. In the Fig. 2.11(a) we show the growth of the fractional size of the giant
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Figure 2.11: (a) Fractional size Sg/N of the giant component of the ITN is plotted with the
fraction f of the links that are dropped in the descending (filled circles) sequence from the strongest
and in the ascending (unfilled circles) sequence from the weakest weight of the links. (b) The difference
1 − Sg/N has been plotted on a semi-log scale which indicates an exponential approach to the fully
connected network.

component Sg/N with the fraction f of links dropped. The plot shows that the growth rate is

slower in the first case and the giant component spans the whole ITN faster than when links are

dropped in the ascending order of strengths. Moreover, how the single connected component is

attained has been quantitatively studied by plotting 1 − Sg/N and f on a semi-log scale in Fig.

2.11(b). The intermediate straight portions in both plots indicate exponential growths of the size

of the giant component.

2.4.4 Nodal Strength

The strength si of a node i, si = Σjaijwij, in the case of ITN corresponds to the total volume of

annual trade associated with the node. Intuitively, one can expect that in general the strengths of

high-GDP countries are higher than those of the low-GDP countries. To see this in a quantitative

fashion, we have utilized an elastic constant γ to measure how changes in strength(s) respond

to changes in GDP(G). Formally, we define:

γ =
ds/s

dG/G
, (2.3)

where both s and G are measured in US dollars.

In Fig. 2.12 we plot the strengths si vs. GDP Gi (in units of millions of US dollars) for 22

different countries, representing a mix of economic strengths, i.e., 12 high, 7 middle and 3 low
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Figure 2.12: The dependence of the strength si(Y ) of a country i on its GDP Gi(Y ) in year Y ,
plotted for each country (with a different color) over the 53 year span from 1948 to 2000. The strength
and GDP being measured in millions of US dollars. General trend corresponds to a non-linear growth
with an average exponent of around 1.2.

income countries. It is observed that the strength of each country grows non-linearly with its

GDP with approximately the same slope γ. To take into account inflation we scale the strengths

by the GDP deflation factor as it can be easily calculated from the data [89]. The deflation factor

f(Y ), for a particular year Y , is calculated by dividing the GDP current to the year by the real

GDP. In Fig. 2.13(a) we plot the scaled strengths si(Y )/f(Y ) vs. real GDP GR
i (Y ) for different

countries. Here we make an observation that due to the small magnitude of variation of the GDP

deflation factor (this quantity is plotted in Fig. 2.13(b)) compared to the large magnitude of

changes in the values of strength and GDP, the value of γ does not change appreciably.

In Fig. 2.13(c) we show the probability distribution of γ values for 168 different countries.

The distribution has a long tail and the γ values of 12 countries are found to be larger than

2. A detailed inspection reveals that majority of these 12 countries are those originated after

Soviet Union, Yugoslavia and Czechoslovakia were fragmented. An overall average of the growth

exponents has been estimated to be γ = 1.26 which comes down to 1.06 if these 12 countries

are not considered for the averaging. The peak value of the distribution occurs very close to

γ = 1. Interestingly, Irwin [93] has observed earlier that the total world export volume varies as a
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Figure 2.13: (a) The dependence of the scaled strength si(Y )/f(Y ) of a country i on its real
GDP GR

i (Y ) in year Y , plotted for each country over the 53 year span from 1948 to 2000. (b) The
variation of the GDP deflation factor over the period of investigation. (c) The probability distribution
of the exponent γ associated with individual countries.

function of the total world real GDP to the power of 1.16, along with other factors. In comparison,

however, our observation reveals a more detailed picture, indicating that the total trade volumes

of individual countries are also approximately power-laws as function of their individual GDPs,

with exponents close to this value.

2.4.5 Rich-club Behavior

The rich-club behavior refers to a non-trivial correlation that is seen to exist among the nodes of

different real-world networks like the Internet [94]. For an unweighted network this means that

large degree nodes, referred to as rich nodes, are strongly connected among themselves forming

a club. Precisely such a club consists of a subset of nk nodes whose degree values are at least k

and the rich-club coefficient (RCC) is measured as,

φ(k) =
2Ek

nk(nk − 1)
, (2.4)

where Ek is the number of links that actually exist in the club and [nk(nk − 1)]/2 is the total

number of node pairs in the club [94]. When the RCC φ(k) increases with the degree k, it implies

that rich nodes are indeed tightly connected.

However it has been realized that only this definition is not enough, since with this measure
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Figure 2.14: (a) A typical step of the local rewiring algorithm [98, 99]. A pair of links A-B and
C-D is randomly selected and rewired in such a way that two new links A-D and B-C are formed and
the original connections A-B and C-D are erased form the network. During this process it is taken care
are of that no multiple edges or self loops are formed. (b) A small network is shown to illustrate the
process of weight randomization. The original network has four nodes and four links. The weights on
the links are WAB = 3, WBD = 13, WCD = 1 and WAC = 7 such that the strength values are sA = 10,
sB = 16, sC = 8 and sD = 14. After randomization, a new set of weight values are obtained viz.

WAB = 6, WBD = 10, WCD = 4 and WAC = 4 which are consistent with the original strength values.

even uncorrelated graphs like the ones obtained by the Molloy-Reed (MR) algorithm [95, 96]

show some rich-club effect as well [97]. It is suggested [97] that to obtain a proper benchmarking

one needs to define a ‘null model’ or the maximally random network (MRN). The MRN can be

constructed by the local rewiring algorithm [97–99] that randomizes a network preserving the

nodal degree values {ki}. This algorithm is illustrated in Fig 2.14(a). The repeated application

of the rewiring step, starting with original graph, generates an ensemble of graphs corresponding

to the original. Measuring the corresponding RCC φran(k) on this ensemble and observing the

variation of the normalized rich-club coefficient i.e., the ratio,

ρ(k) =
φ(k)

φran(k)
, (2.5)

one is able to truly characterize the rich-club phenomenon. The ratio ρ(k) greater than unity

signifies that the high degree nodes are indeed tightly interconnected due to some non-trivial

organizational principle in the network. For uncorrelated graphs it is found that ρ(k) = 1 for all k

[97]. We have executed the same analysis for the ITN for different years. However, it is observed
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Figure 2.15: (a) The weighted rich-club coefficient Rw(s) and (b) the normalized counterpart
ρw(s), for a model network constructed along the lines of [100]. The network for which Rw(s) is
calculated has a scale-free topology with exponent γ = 2.5 and the strength-topology relation s ∼ kβ

is satisfied on average with β = 1.5.

that the variations of φ(k) and φran(k) with k are nearly same and consequently ρ(k) is nearly

equal to unity for the whole range of degree values.

Weighted Rich-club Coefficient

We have also studied the rich-club effect of the ITN by considering it as a weighted network. To

characterize the rich-club phenomena in weighted networks we have generalized the concepts that

are applicable to the unweighted graphs. The rich-club is now defined as the subset of nodes (ns

in number) whose strengths are at least s controlling a major share of the world’s trade dynamics.

The RCC for the weighted network is defined as:

Rw(s) =
2Σsi,sj>swij

ns(ns − 1)
. (2.6)

However, the properly normalized RCC, ρw(s) is obtained by designing a null model corresponding

to the original network by generating the ensemble which we call the maximally random weighted

network (MRWN).

We have generated the MRWN by keeping both the nodal degrees {ki} as well as the nodal

strength values {si} preserved. To generate the MRWN of a given weighted network, we first

generate the MRN from the unweighted version of the graph, as described above. Next we use a

self-consistent iteration procedure to obtain the link weight distribution consistent with the nodal

strength list {si}. We start by assigning arbitrary random numbers as the weights wij to all links
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Figure 2.16: The weighted rich-club coefficients Rw(s) (solid line) and Rran
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sponding to the ITN of the year 2000.

maintaining that the weight matrix is always symmetric, i.e., wij = wji. For an arbitrary node

i, the difference δi = si − Σjwij is calculated. Weights of all ki links meeting at the node i are

then updated as:

wij → wij + δi (wij/Σjwij) , (2.7)

in order to balance si and Σjwij. By repeated iterations the link weights quickly converge

and attain consistency with nodal strengths {si}. The Fig 2.14(b) illustrates the effect of the

above procedure on a small graph consisting of four nodes and four links. For this graph a new

configuration of weights is obtained which is consistent with the strength values of the four nodes.

Once we generate this ensemble of different network configurations having fixed degree sequence

{ki} and fixed strength sequence {si}, we measure the average weighted RCC Rran
w (s) for this

ensemble to obtain the normalized weighted RCC:

ρw(s) =
Rw(s)

Rran
w (k)

. (2.8)

Similar to that unweighted counterpart, ρw(s) greater than unity will signify positive correlation

among the nodes in the club.

We verify our procedure for the model of maximally random weighted networks proposed in

[100]. To construct such a weighted network we first use the MR [95, 96] algorithm to build

an uncorrelated scale-free network with degree distribution P (k) ∼ k−γ . While choosing the

degree sequence we limit the maximum degree kmax to O(Nα), where α = min[1/2, 1/(γ − 1)]
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Figure 2.17: The ratio ρran(s) of the two coefficients Rw(s) and Rran
w (s) for the year 2000 and is

nearly equal to unity over the whole range of variation.

[101–103], so that ultimately it is possible to construct the unweighted network devoid of multiple

edges and self-loops. We assign expected strengths to the nodes as si ∼ kβ
i and then assign the

weights on the links using the relation [100]:

wij =
〈s〉kikj

〈k〉sisj

, (2.9)

so that the final strength values become si =
∑

j aijwij and satisfy the relation s ∼ kβ on

the average. For such a network we do not expect any rich-club behavior. The structural

correlations [103] that are manifested in these networks due to finite size effects (which includes

correlations generated by avoiding self-loops and multiple edges) are also present in the null

model and therefore does not affect the ratio ρw(s). This is illustrated in Fig. 2.15. The network

constructed has γ = 2.5 and β = 1.5 (such a value of β is seen in many real-world networks like

the network of worldwide air transportation network [34]). Whereas the function Rw(s) grows

monotonically with strength s, the normalized weighted RCC ρw(s) is found to be nearly 1 for

all s values.

In Fig. 2.16 we plot both Rw(s) of the ITN for the year 2000 and Rran
w (s) for the MRWN

with the scaled nodal strength s/smax. The two measures are found to be nearly same, grow like

s0.85 for large s values and their ratio ρran(s) is nearly equal to one except for a few values of s

near smax (Fig. 2.17).

To explain the above facts we observe that only 15% elements of the adjacency matrices of
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Figure 2.18: Variations of the (a) fraction fw(s) of the total volume of trade taking place among
the members of the club having strengths s and above, and (b) percentage of the world countries that
make 50% of the world’s total trade volume falls from ≈ 19% to ≈ 6% between 1948 to 2000.

the ITN and the MRN are different. Therefore a typical node of ITN retains the links to most

of its neighbors even after maximal randomization. This is because of the high value of the link

density (59%) of the ITN for the year 2000. As a result ρran(k) as well as ρran(s) are nearly

equal to unity. This implies that the pairwise link connections and the associated link weights of

the original ITN are very close to those of the corresponding MRWN. In fact one can say that

the original ITN is a typical member of the different random configurations of the MRWN when

the {ki} as well as {si} sets of the ITN are preserved.

Zhou and Mondragón [94] observed a very similar behavior for the Internet statistics. Following

them we conclude that rich nodes in the original ITN and in its corresponding MRN and MRWN

are tightly connected and the similarity of the rich-club connectivity in the ITN structure (with

and without weights) does not imply that ITN lacks a rich-club structure.

In fact the presence of the rich-club effect is evident even if we simply analyze the variation

of the fraction fw(s) of the total volume of trade taking place among the members of the club.

We define fw(s) as the ratio of the total volume of trade a subset of countries make among

themselves to the total trade volume W in the ITN. The subset is defined as those countries

whose strengths are at least s. For this analysis we first arrange the nodes in a sequence of

increasing strengths and then delete the nodes in this sequence one by one. When a node is

deleted all links meeting at this node are also deleted. Consequently the total volume of trade

among the nodes in the subset also decreases.

In the Fig. 2.18(a) we show how fw(s) decreases with s/smax for the year 2000. Up to a large

value of s/smax ≈ 0.01, fw(s) effectively remains close to unity beyond which it decreases faster.

It is observed that only a few top rich countries indeed trade among themselves one half of the
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Figure 2.19: (a) The strength-strength correlation 〈sisj〉 as a function of link weight wij for the
year 2000. For a power-law form 〈sisj〉 ∼ wν

ij of the function, ν is found to be around 0.8. (b) The
values of ν for different years.

world’s total trade volume, corresponding to fw(s) = 1/2. Evidently these countries are very rich

and are the few toppers in the list of strengths - which is said to have formed a ‘rich-club’(RC).

Therefore we measure the fraction of countries in the RC and calculate how the percentage size

of the rich-club varied with time. In Fig. 2.18(b) we plot the year-wise fractional size SRC of the

rich-club from 1948 to 2000 and see that it has been decreased more or less systematically from

≈ 19% to ≈ 6%. This implies that though the world economy is progressing fast and more and

more countries are taking part in the world trade market, yet a major share of the total trade is

being done only among a few countries within themselves.

2.4.6 Other Correlations

The very heterogeneous distribution of trade volumes in the ITN is also reflected in the average

pair correlation function 〈sisj〉 [34] of nodal strengths and in its power-law dependence on the

link weights wij as shown in Fig. 2.19(a). Links with high weights wij ∼ wmax obviously must

connect pairs of nodes of high strength, and for them 〈sisj〉 ∼ s2
max. On the other hand, for links

of weights around unity, 〈sisj〉 ∼ smax. Assuming that wmax itself is of the order of smax, we find

an upper bound for the exponent ν = 1 describing the variation of 〈sisj〉 ∼ wν
ij . Our analysis of

the ITN yields, however, a somewhat smaller value of ν being between 0.55 and 0.85 for different

financial years between 1948 and 2000. The values of ν for different years are plotted in Fig.

2.19(b). The dependence of the weight distribution on the underlying topological structure of

the ITN is studied by measuring the average strength of a node as a function of its degree [34],
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Figure 2.20: Binned plot of the nodal disparity measures with degree. Averaged ITN data for the
period 1991 to 2000 have been used. The best fit straight lines are (a) kY (k) ∼ k0.56 for the trade
network, (b) kimpY (kimp) ∼ k0.58

imp for the import network and (c) kexpY (kexp) ∼ k0.54
exp for the export

network.

which turn out to exhibit strong degree of non-linearity: 〈s(k)〉 ∝ kµ where µ varies between 3.4

and 3.7 for the same period.

2.4.7 Disparity

A country makes different volumes of trade with other countries. Therefore the values of the

weights associated with the links of a node, both for imports and exports vary quite a lot. A

numerical measure of this fluctuation is given by the ‘disparity’ measure Y [104, 105]. For a node

i, the disparity is measured by [106, 107]

Yi =

ki
∑

j=1

[

wij

si

]2

. (2.10)

The average disparity measure Y (k) over all nodes of degree k is calculated. If the weights

associated with the k links are of the same order then Y (k) ∼ 1/k for large k values where as if

the weights of a few links strongly dominate over the others then Y (k) is of the order of unity. We

have measured three disparity measures, namely Y (k) for the link weights wij as the total trade,

Y (kexp) for the link weights wexp
ij as the export from the node i to node j and Y (kimp) for the link

weights wimp
ij as the import from the node j to node i. These quantities are plotted in Fig. 2.20

on log-log scales and we observe power-law dependencies as: kY (k) ∼ k0.56, kimpY (kimp) ∼ k0.58
imp

and kexpY (kexp) ∼ k0.54
exp . Similar variations are also observed in trade imbalances [82].
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2.5 Communities

While studying a real network, one faces the problem of understanding and quantifying the

nature of organization present in the system. We have already come across this problem while

dealing with problem of characterizing rich-club phenomena. Decomposing the whole network

into different smaller but highly interconnected subgraphs, called communities and characterizing

their presence in terms of local correlations has been a challenging subject in the field of complex

networks [108, 109]. The methods developed in this context been applied in very different

contexts like the Internet [94] and biological webs [111]; and in general the methods have been

widely different. For example in [109] the investigation has been done in the structural properties

overlapping communities called k-clique communities. While the approach in [112, 113] has been

to investigate the degree of community structure at different levels of hierarchy called k-cores.

The first method essentially relies upon determination of all cliques (complete subgraphs) of size

k for a fixed value of k whereas the latter is based on application of bootstrap percolation [114]

to find subgraphs in which all nodes have at least k edges. In general, however, the value of k in

the former method can be varied to probe at different hierarchies.

In this section our aim is to study the trading patterns of the ITN as it has evolved over 53 years

[89] from 1948 to 2000 with an approach which is intermediate to that of [109] and [112, 113],

and takes into account the bare topological as well as the weighted description. The method we

describe below can in general be used to study and extract information from other real evolving

networks.

In an unweighted network, a set of nodes will be called strongly interconnected if the number

of links within these set of nodes is large. This degree of interconnectedness is maximum when

the set of nodes constitute a clique. A node, in general, belongs to one or more independent

cliques of different sizes. By an independent clique we mean a clique which is not a part of larger

clique. In our method, for a particular node, we only focus on the clique with the largest size that

the node belongs to. In general there can be more than one largest clique that the node belongs

to. In such a case we determine the complete set of such cliques for a particular node. And we

determine the sets for all the nodes in the network. In other words, in the network we determine

all independent cliques where each of them is largest for at least one node in the network.

We call such cliques communities. In particular, we are interested in the structure of the

largest clique (can be more than one) in the network, i.e., by our definition the community with

the largest size. The notion of such a community is close to the sense of having a rich-club because

we expect the hubs to be participating in such a community [115]. The definition of a completely

connected graph as a community also makes sure that any measure of interconnectedness like

the rich-club coefficient for such a community, where a null ensemble is used for sampling and

eventual normalization, yields a value ≥ 1, i.e., its presence is statistically recognized.
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Figure 2.21: The illustration of the extraction of the largest clique in a small graph of seven
nodes. The example graph is a stable 3-core and therefore it is searched for the presence of a 4-clique.
We assume (without the loss of generality) that the searching process begins at the node numbered 1
having four edges, i.e., by searching for those 4-cliques which contain 1. We begin by constructing a
set where all the neighbors of 1 as well as the node 1 itself are listed. This set is (as shown above by
adjacent circles) therefore:{2,3,4,5,1}. This actually enumerates the subgraph which consists of 1 and
its neighbors and the links that exist between these nodes. In the next step, four new sets are generated
(sequentially) each of which corresponds to a neighbor of 1. Now when a new set is generated, it is
checked against the sets that are generated earlier in the same time step. In this process of comparison
if one set is found to be the subset of the other, the former is removed from the process and the latter
is only considered for the next time step. Since we are searching for a 4-clique, if the cardinal number
of any set is found to be less than 4, it is removed from the process. As seen above, the set {4,1,5} is
rejected in the second step. In the figure above the set of shaded circles with a particular set of circles
represents a complete subgraph within a larger subgraph. The process is carried out for newer time
steps until we arrive at a complete subgraph of size four i.e., a 4-clique.

2.5.1 Algorithm

The problem of computing the size of the largest clique is a NP-complete problem [116]. For

arbitrary graphs this problem can not be solved in polynomial time. However, our method, which

we describe below, is found to be effective for the graphs we are interested in. Primarily because

the graphs we investigate here are dense. The average link density being 0.52 in all the realizations

of the ITN corresponding to different years. First we find kc, the largest value of k above which

the size of the k-core falls to zero. We note that if the size of the largest clique present in the
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Figure 2.22: The probability P<(k) to find a community of size less than k.

graph be kmax, then kmax ≤ kc + 1. This upper bound on kmax helps in pruning the graph and

searching within the graph faster. If the largest clique has size exactly equal to kc + 1 then we

know it is a part of the kc-core and we search for its presence within this subgraph (which is in

general smaller in size compared to the original graph) without worrying about the rest of the

nodes which lie outside. Now if there is no clique of size kc + 1 within the kc-core then we look

for the presence of a clique of size kc. And this clique has to be searched in the (kc − 1)-core,

which is a larger subgraph. This is because a member of a kc-clique can have exactly kc − 1

edges and will not be a part of kc-core. Like this we go on lowering the value of k to search for

k + 1-cliques in k-cores until we are successful in finding the largest clique.

The search for k-cliques within a (k − 1)-core is done in the following way. We choose any

node i having ki edges. We construct a list where we put all its neigbours - l1’s and the node

itself. This is the first step. Then in the second step there will be ki new lists generated from

this list. Each list will contain the node i, one of i’s neighbour l1 and all the neighbours of l1

- l2’s, present in the old list i.e., nodes l2 which are neighbours of set {i, l1}. Then in the next

step newer lists will be generated and each list will contain nodes which are neighbours of the set

{l2, l1, i}. This process is continued until we find all lists {lk−1, lk−2, ..., l1, i} which enumerate

all k-cliques that include the node i. During the process whenever the size of a list falls below

k no newer lists are generated from this list. Thus if i is not a member of a k-clique then the

generation of lists will end without detecting one. After finding all the k-cliques that include i,

the node i is removed from graph along with its links. This makes sure that there is no multiple
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Figure 2.23: The probability P (m) that a randomly chosen node participates in m different com-
munities.

detection of the same clique. The pruned subgraph is checked for stability i.e., whether it is

still a (k − 1)-core. If there is a remaining (k − 1)-core a new node is selected and the above

branching process of lists is started. Like this the (k− 1)-core is explored for detecting k-cliques.

In practice when we choose a node to carry out the search process we always choose the node

with the minimum number of edges. This reduces the memory usage to a great extent and also

makes the process faster. The illustration of this process in a graph where the largest clique has

four nodes is given in Fig. 2.21.

The algorithm described above is sufficient to determine the set of communities (following our

definition) with the maximum size present in the graph. However, if we require enumerating all

the communities we have to carry out the process further. We look for communities of size k

in the (k − 1)-core only after the communities of size larger than k have been detected. And

while choosing a starting node for a search process or removing nodes by bootstrap method

we choose nodes which do not belong to the larger communities. Thus probing the graph at

different hierarchies, from the kc-core to the 1-core, all the communities can be found. The ITN

grew form a size N=76 in 1948 to a size of N=187 in the 2000. In such a scenario, we probe

the organization of the communities and how the overall structure has evolved over the period

of investigation. As the communities we investigate here are essentially cliques with the special

property stated above, we call such a community ‘k-community’ if it has k nodes.
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Figure 2.24: The plot of scaled probability density 〈wov〉P (wov) versus scaled overlap wov/〈wov〉
where P (wov) is probability that the amount of overlap between two communities (in terms of weights)
is wov and 〈wov〉 is the average overlap. In (a) the probability is calculated over the period from 1950
to 1960 and in (b) the plots are for four calender years 1970, 1980, 1990 and 2000.

2.5.2 Analysis

For a particular node i we denote the size of the largest community it belongs to by kmax
i . Then

the size of the largest community in the network is kmax = max{kmax
i , ..., kmax

N }. In general a

node i may be a member of different k-communities where k ≤ kmax
i . Looking into different

networks realized for different years, the importance of such communities is understood by the

fact that in a given network for any node the sum of the weights wij of its links which belong

to kmax
i communities is almost 90% of its strength si. Firstly, we observe that in a ITN for

a particular year the number times a k-community occurs increases with k and is ultimately

cut-off by the value of k = kmax. In Fig. 2.22 we plot the cumulative function P<(k) that is

the probability to find a community of size less than k. We find that P<(k) increases in the

intermediate regions as a power-law before saturating to unity. The Fig. 2.22 suggests that the

frequency of k-communities goes like kδ with δ ≈ 5. We define mi [109] to be the number of

communities that a node i is a member of. In Fig. 2.23 we plot probability density P (m) of m

treating m as continuous variable. We find a power-law decay over several decades with exponent

−1. This suggests a scale-free hierarchy of participation of countries in different communities

where quite naturally the rich nations sit at the top of the hierarchy.

The ITN being a weighted network, when we study the nature of overlaps between different

communities we look at overlaps in terms of weights. We define wov
ij to be the sum of weights

on the links which are common to the communities i and j. In Fig. 2.24 we plot the probability

density P (wov) of wov for different years. Now the different plots for different realizations of the
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Figure 2.25: (a) The size of the largest clique kmax versus the size N of the ITN. The inset shows
the computer time (in seconds) required to identify the largest cliques. (b) The number Nkmax of cliques
of size kmax against different years.

ITN are scaled by the corresponding average overlap < wov >. This normalization is done to

take into account the effects of economic growth as well as inflation, weights being originally in

millions of US dollars. We observe that the distribution functions show a change in nature as the

ITN evolves from the year 1950 to 2000. While plots during the period of 1950 to 1960 show

a scale-free region with exponent around −0.9 for many decades of wov/ < wov >, the region

completely vanishes after 1970. We also note the change is gradual and takes place during the

period from 1960 to 1970. This change in nature of overlap from scale free to a modal form

(where the most probable value is quite large) suggests the growth of activity in the ITN during

this period. Most rich nations develop trade ties amongst each other so that the amount of trade

that they make between themselves show up as large overlaps.

Next we focus on the kmax-communities of different years which quite naturally are constituted

by the high degree nodes because these are nodes with very large strengths i.e., the rich nations

of the world. In Fig. 2.25(a) we plot the value kmax against the number of nodes N in the ITN

during the 53 year period of investigation. We find kmax to be increasing linearly with N . In Fig.

2.25(b) we plot the actual number kmax-communities found in each year. The number Nkmax has

large fluctuations but is seen to fall to small values during the end of the period of investigation.

In the year 2000 the ITN has largest kmax which is 71 and the value of Nkmax is only 2. This is

the signature that nations of the world leading in trade have evolved to a strongly interconnected

sub-network. Now we look more closely at the trend in trading pattern of such nations. We

call Gkmax as the union of all kmax communities. More correctly in a given network Gkmax is the

sub-network composed of all the nodes participating in the kmax-communities and the links which
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Figure 2.26: (a) The number of nodes M(Gkmax) that participate in the formation of the largest
cliques in the ITN for a particular year scaled by total number of nodes N in that year is plotted
for different years. (b) The trade between the nodes participating in the largest cliques as fraction
(f(Gkmax)) of the total trade in the network.

are part of the latter. The notion of Gkmax is similar to a kmax-core of the k-core representation.

Interestingly it is found that the kmax-communities which participate in Gkmax always form a large

(with respect to the number of kmax-communities present) kmax-clique percolating cluster [110]

and in many cases Gkmax itself is the percolating cluster. This brings out strong cohesiveness in

the structure of Gkmax . We define M(Gkmax) as the number nodes in Gkmax. In Fig. 2.26(a) we

plot the fraction M(Gkmax)/N for different years. It shows no overall trend but fluctuates around

a value of 0.4. So as the ITN has grown in size over the years the size of Gkmax has increased

in almost a fixed proportion. However, Fig. 2.26(b) reveals a very different aspect of Gkmax. In

Fig. 2.26(b) we plot the sum of weights in Gkmax as a fraction of total weights present in the

graph. It is found to increase as years proceed. This establishes how trade between rich nations

has grown. In 1950 where the fraction of trade is around 60%, it rises to above 90% in 2000.

2.6 Model

We now develop a dynamical model based on well-established gravity models [117] used in social

and economic sciences. In a simple version of the model to describe the flow of social interaction

between two economic centers i and j as a function of their economic sizes mi, mj and distance

of separation ℓij : Fij = Gmimj/ℓ
2
ij . This equation has been generalized to the parametric
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Figure 2.27: Model result-1: (a) Scaled weight distribution fits well with the simple parabola
y = x2.

form [118]

Fij = mα
i

(

mβ
j

ℓθ
ij

/Σk 6=i
mβ

k

ℓθ
ik

)

. (2.11)

where the exponents α and β usually range between 0.7 and 1.1 where as θ is observed to be

around 0.6 [118].

In our model, we assume a unit square to represent the world and N points distributed at

random positions representing the capital cities of different countries. Initially the GDP values

mi(i = 1, N) are randomly assigned with uniform probability such that the total GDP is unity:

Σi=1,Nmi = 1. In Chapter 4 we will investigate some pairwise wealth exchange models which are

used to simulate the distribution of wealth in a society [119–121]. In a similar fashion we let the

dynamics start, which is essentially a series of pairwise interactions. At every time step a pair

of countries (i, j) is randomly selected (1 ≤ i, j ≤ N) for a transaction. In a transaction, the

selected countries invest the amounts Fij and Fji calculated using Eq. (2.11). Then the total

amount of investment F̃ij = Fij + Fji is randomly shared between the two countries as a result

of this transaction, as follows:

mi = mi − Fij + ǫF̃ij + ∆i, (2.12)

mj = mj − Fji + (1 − ǫ)F̃ij + ∆j . (2.13)

Here ǫ is a random fraction freshly drawn for every transaction. The random sharing of F̃ij is

justified by the fact that while the gravity law describes the average interaction in terms of the
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Figure 2.28: Model result-2: (a) The GDPs of the individual countries have a broad distribution,
which in the tail region seems to follow roughly a power-law behavior (shown as a line with exponent
∼1.9). (b) The strength correlation 〈sisj〉 as a function of link weight is shown to grow approximately
as 〈sisj〉 ∝ w0.98

ij .

strengths and distances of separation, the actual amount of trade depends on other factors, many

of them are political.

In this idealized model, countries are not allowed to make debt, which in turn makes the

dynamics non-conservative through the parameters ∆i and ∆j . It holds for these parameters

that ∆i = 0 if Fij < mi and ∆j = 0 if Fji < mj . However, if for some transaction Fij > mi

or Fji > mj then we add ∆i = Fij − mi or ∆j = Fji − mj such that after the transaction,

GDP balance does not become negative. Also after the transaction, the individual GDP’s are

rescaled mi → mi/Σjmj for the total GDP to remain unity. It is observed that a large number

of pairwise transactions leads to a stationary state where 〈m2〉 fluctuates with time around a

steady mean value. Starting at any time after reaching the stationary state, the dynamics is used

to construct a model ITN such that links are established between countries i and j whenever

there is a transaction between them. We let the dynamics run until a pre-assigned link density

(typically 0.3-0.5) has been reached. For example, to generate a network corresponding to the

ITN of the year 2000, we take N = 187 and continue the exchange dynamics till L = 10252

distinct links are dropped corresponding to the link density 0.59. The weight of a link is then

defined as the total amount of investment between pairs of countries in all transactions.

For comparison the weight distribution of our model networks is analyzed in the same way

as the real ITN data, and it turns out that an excellent consistency with the simple parabola

y = x2 is observed for parameter values α = 1/2, β = 1, θ = 1/2, within a tolerance of 0.2 for

all exponents as shown in Fig. 2.27. We also find that the resulting GDP distribution (shown in
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Fig. 2.28(a)) is broad, showing a power-law like behavior for a short interval of m (with exponent

∼1.9) before finite size effects set in. This is to be compared with the real-world data where the

GDP distribution of different countries has been argued to be consistent with the Pareto law [12].

Finally, as in the real ITN, the two-point strength correlation, shown in Fig. 2.28(b), is seen to

grow like 〈sisj〉 ∝ wν
ij with ν ≈ 0.98 in the large weight limit, compared to the range of values

0.6 - 0.8 for the real ITN (Fig. 2.19(b)).

2.7 Conclusion

In this chapter we have presented the analysis of the international countrywise trade data and

studied the variations of different quantities associated with the International Trade Network.

While the ITN is inherently directed, where two opposite flows are associated with the majority

of the links, we largely ignored the directedness and analyzed the network as an undirected

weighted graph. We also observed how different quantities evolved over time. Our analysis

shows that the link weight probability distribution of the undirected ITN fits better to a log-

normal distribution. This feature of the ITN remaining unchanged over a span of 53 years

indicates robustness and some form of universality. Secondly, the nodal strength measuring the

total trade volume associated with a country grows non-linearly with its GDP with a robust

exponent.

Here we also develop a suitable null model to measure the rich-club effect in weighted networks

and we use this to probe the ITN. Our study reveals the inherent subtleties involved in the

definition of the rich-club. We also study the largest cliques in the ITN as it has evolved over the

years. Identification of the cliques reveals a scale-free hierarchical structure in the ITN and also

how participation in trade increased over the years. The rate of increase being more for the rich

countries of the world. Finally, the main features of the real-world ITN have been reproduced by

using a simple non-conservative dynamical model starting from the well-known gravity model of

social and economic sciences.



3 Self-organized Critical Model of

Earthquakes

3.1 Introduction

We have already discussed in previous chapter that a striking feature of many real-world networks

are their fat-tailed degree distributions. It has been argued that these networks, called scale-free

networks, self-organize to such architectures. A possibility which has been explored is that the

network topology evolves under the feedback from some dynamical process taking place on the

network itself. Several groups [122–124] have attempted to explain the emergence of scale-free

nature in networks in the framework of self-organized criticality (SOC). Such investigations are

prompted by the success of SOC in modeling the fractal structures and scale-free properties

ubiquitous in nature [20, 21] where any external control is absent.

In this chapter, based on our publications [125, 126], we present a SOC model for earth-

quakes with a new boundary condition. This boundary moves with the center of the avalanche

and therefore is different for different avalanches. Consequently all measures become free from

the non-uniformity with respect to the fixed boundary models; and we investigate the different

distributions and scaling, observed in real data, in the context of the model.

SOC has been argued to explain the natural phenomenon of earthquakes where signatures of

criticality are revealed by the presence of rich scaling and scale invariant phenomena in absence

of any control parameter. Earthquakes are characterized by the very slow build-up and sudden

release of stress within the earth’s interior and occur as irregular bursts of various magnitudes.

A globally driven variant of the sandpile model of SOC, which we have already discussed in the

Chapter 1, provide an appropriate platform for modeling where an avalanche in the model is

identified with an earthquake.

Earthquakes result in sudden release of energy under the surface of the earth. The energy

propagates as waves called seismic waves. In general a single earthquake results in very different

kinds of vibrations. The waves are essentially classified according to the resulting particle motion

relative to the direction of propagation of the wave. These waves propagate at the earth’s

surface as well as through the interior of the earth. At the surface of the earth these waves

produce vibrations and fracture of the ground. Conventionally, the magnitude of an earthquake

46
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Figure 3.1: Time series for earthquake magnitudes in the period of November 1992 to February
1993 for earthquakes recorded by the South California Seismographic Network. Data is available at
http://www.data.scec.org/ftp/catalogs/SCSN.

is measured on the Richter Scale. On a particular seismograph i.e., a magnitude measuring

instrument, a particular earthquake is assigned a magnitude m + 1 if it releases ten times more

energy than an earthquake of magnitude of m. This estimation is done based on the amplitude

of vibration recorded in the seismograph and the difference in time of arrival of different form of

waves from where they originated due to a particular earthquake. An earthquake of magnitude

m = 3 or less will not cause much perturbation at the surface but earthquakes with magnitude

larger than 7 will inflict damage to man-made structures like buildings ultimately causing severe

loss of human life and property. Fig. 3.1 shows a time series for the magnitude of earthquakes

(with magnitude greater than 1.8) that occurred in the Southern California region in year 1992-

1993. The quantity 10m is known as the seismic moment ‘s’. The energy released E is assumed

to follow the approximate relation E ∼ s3/2 [127].

Based on different mechanical properties like the elastic moduli, the earth can be divided into

different layers. The outermost layer is the lithosphere which has an average thickness of around

60 kilometers. Under the lithosphere lies the asthenosphere which has relatively less viscosity

and shear strength and therefore is able to flow on geological time scales. This layer is another

100 kilometers thick. However, the lithospheric layer is broken up into different pieces called

tectonic plates; and a single plate in general underlies continents as well as oceans(Fig. 3.2). An

interplay of transport of thermal energy and matter at the boundary of the lithosphere and the
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Figure 3.2: Picture showing different tectonic plates containing the continents and oceans (courtesy
of http://en.wikipedia.org).

asthenosphere gives rise to motion of the tectonic plates which ‘float’ on the asthenosphere. The

plates move very slowly relative to each other. Motion of individual plates range from around 1

cm per year to around 10 cm per year. The relative motion between two adjacent plates often

results in their collision at different point along the boundaries and gives rise to a ‘stick-slip’

process [128–130]. Such stick-slip processes are the major cause of earthquakes. When two

plates have their surfaces (at the plate boundaries) in contact and one plate tries to slide past the

other, the motion is rarely smooth. The irregular surfaces with rocky projections provide huge

resistance. In fact the structure of boundaries are known to be fractal-like [132, 133]. When

the sliding motion is prevented by the irregularities, a stress field develops in the region with

accumulation of strain energy within the volume near the surfaces in contact. The upper part

of lithosphere is brittle and the process continues until the stress is sufficient to cause fracture

in the rocks that compose the surfaces allowing sudden motion along boundaries. The stored

strain energy is released instantaneously in the form of seismic waves causing an earthquake. The

point at the plate boundaries where stress initiates fracture is called the focus of the earthquake.

Generally, the focus lies at some depth under the ground. The point directly above the focus and

at the ground level is called the epicenter of the earthquake.

Although rare but there are earthquakes in the interior region of a tectonic plate, away from

inter-plate boundaries. These are called intraplate earthquakes and are found to occur around

fracture zones within the tectonic plates. Most earthquakes, however, occur at and around
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Figure 3.3: Plot of the Gutenberg-Richter law from the data from the South California Seismo-
graphic Network.

the plate boundaries. The investigations into the pattern of occurrence of earthquakes reveal a

clustering effect in space and time. The general observation being earthquakes tending to occur

in intermittent bursts but without any average frequency; and successive bursts most of the times

separated by long periods of inactivity. A conventional way of analyzing data from such bursts is

to divide a cluster of earthquakes into different shocks. The largest of the lot being labeled as the

main shock and earthquakes that occur before and after the main shock as the foreshocks and

aftershocks, respectively. However, a clear demarcation may not be possible always. According

to Omori’ law, suggested in 1894 [136], the number of aftershocks n(t), after time t elapses since

the main shock in a cluster of earthquake events, decays in time as:

n(t) =
k

(c + t)p
, (3.1)

where k, c and p are constants [136–138] that are obtained from a fit of this empirical law to the

data for the cluster of events. The value of p is seen to range between 0.7 and 1.7 from region

to region.

In addition to Omori’s law which is a power-law, there emerges many other instances of fractality

and scale-invariance in the spatio-temporal behavior. The epicenters are found to be spatially

distributed on a fractal pattern [4, 131, 133]. The distances between the epicenters of successive

earthquakes are distributed according to a power-law [134]. Estimation of correlation between

a pair of shocks, when used for the identification of the main shock of each aftershock, results
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Figure 3.4: A sample time series shows how the inter-occurrence time of earthquakes is determined
with after the value for magnitude cutoff mc is chosen.

in a scale-free network of connections [135]. Compared to Omori’s law, a much more holistic

description encompassing earthquakes from all regions and of all magnitudes is the Gutenberg-

Richter law [139]. This empirical law summarizes the fact that emerges from earthquake catalogs

all over the world. It is seen that the number of earthquakes N>m of magnitude at least m decays

exponentially with m as:

log10N>m = c1 − c2m. (3.2)

The plot of N>m versus m from the data recorded in the Southern California region in Fig.

3.3 illustrates the above law. Since the magnitude of an earthquake varies logarithmically with

the amount of energy released: log10E(m) = c3 + c4m. Eliminating m one gets, log10N =

c1 − (c2/c4)log10E + (c2c3)/c4. This implies that the cumulative number N(E) of earthquakes

of energy at least E decays like a power-law as:

N(E) ∝ E−b (3.3)

where b = c2/c4. Therefore the probability density of earthquakes varies as: Prob(E) ∝
dN(E)/dE ∝ E−1−b. The estimates from different parts of the world give the value of b

around 1.
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Figure 3.5: The South California region originally studied by Bak et al. [140]. The region divided
into cells of size (a)L = 4◦ and (b)L = 1◦. The figures are courtesy of Bak et al. [141].

3.2 Recurrence Time Distribution

In this chapter of the thesis we focus on one particular aspect of the spatio-temporal behavior of

earthquakes where scaling and scale invariance emerges. It is interesting to look at the time inter-

vals between successive shocks. This time is referred to as the recurrence time, interoccurrence

time or the waiting time. In a process which is Poissonian in nature the probability of occurrence

of an event in a time slice ∆t is given by ∆t/〈τ〉, where 〈τ〉 is the mean time between occurrence

of earthquakes. However, the general observation of intermittent bursts of shocks in space and

time and the evidence of scale invariant behavior like the Gutenberg-Richter law suggests to a

non-Poissonian process and absence of any characteristic scale.

The recurrence time is defined with respect to the precision mc = log10(sc) with which the

magnitudes of different earthquakes are measured as well as the size L of the region where

the earthquakes occurred. Consider a model time series (Fig. 3.4) of occurrence of shocks of

magnitude at least mc whose epicenters are located within a region of size L. Let the ith shock

in this sequence occur at time ti. Then the recurrence time is defined as τi(mc, L) = ti − ti−1.

The lower cut-off mc(or sc) of the earthquake magnitudes and the size L have competing effects

on the recurrence time distribution. Since the probability of occurrence of an earthquake of size

at least sc decreases with sc, for a fixed L the recurrence time increases with increasing sc.

On the other hand for a fixed sc, since the maximum of the earthquake sizes increases with L,
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Figure 3.6: (a) Recurrence time distributions for earthquakes in Southern California region con-
structed from SCSN catalogue data for time span of 1985 to 2007. (b) Scaling of the distributions
according to the prescription in [140, 141].

the probability of occurrence of an earthquake of size at least sc increases with increasing L.

Consequently the recurrence time decreases with increasing L.

3.2.1 The BCDS analysis

The recurrence time distribution of earthquakes was first analyzed by Bak, Christensen, Danon

and Scanlon (BCDS) from the viewpoint of earthquake as a self-organized critical phenomenon.

BCDS analyzed the earthquake shock data during the period from 1984 to 2000 of the Southern

California region considering main events, aftershocks and foreshocks on the same footing [140,

141]. They divided this region spanning 20 ◦N to 45 ◦N latitude and 100 ◦W to 125 ◦W longitude

into a grid of cell size L degrees, as is shown in Fig. 3.5, and calculated the recurrence times of

all shocks whose epicenters lie within a specific cell. In general these cells are not equivalent with

respect to seismic activity since it is already known that the epicenters of earthquakes form a

fractal set, therefore some cells within the grid have strong seismic activity with many epicenters

where others may have low level of seismic activity with small number of epicenters. BCDS

collected together the data of different cells and made a grand sample where recurrence times

varied over a long range from small values (highly active cells) to large values (less active cells).

They found the probability density for recurrence time P (τ, L, sc) to have a power-law region τ−γ

till a cut-off decided by the values of L and sc. We reconstructed the probability from the data

originally studied by BCDS. This is shown in Fig. 3.6(a). The power-law regime of interoccurrence

times signifies a correlated sequence of earthquakes and can be identified with Omori’s law for

aftershocks. The power-law indicates to an absence of scale and hence to artificiality in the
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characterization of earthquakes into foreshocks and main shocks. Two earthquakes separated by

a long time-span may be expected to be correlated, the upper limit for such a span being provided

by threshold magnitude sc and size of the region of observation L. BCDS chose x = τLdf sc
−b

as the scaling variable, where b is the exponent from Gutenberg-Richter law (Eq. (3.3)) and df

giving the fractal dimension of spatial distribution of epicenters. The quantity sb
c/L

df appearing

in the definition of the scaling variable actually provided a measure of mean recurrence time

〈τ〉L,sc
of earthquakes since the probability of occurrence of a shock of size at least sc goes like

s−b
c and there are Ldf shocks within a specified period of observation. They proposed a scaling

form for probability density:

P (τ, L, sc) = τ−γF
(

τ
Ldf

sb
c

)

.

The scaling analysis[140] with value of b = 1, df = 1.2 (which BCDS interpreted as the effective

fractal dimension of the San Andreas fault system) and Omori exponent γ = 1, allowed collapse of

probability densities, for different values of L and sc onto a single curve. The universal function

F(x) was found to be constant for x < 1 signifying the correlated Omori’s law regime and

decaying faster than a power-law in the uncorrelated regime when x > 1. The Fig. 3.6(b) shows

the nature of data collapse when we performed the scaling according to the above prescription.

Taking the value of τ to be unity we can also recast the scaling proposal in the form:

P (τ, L, sc)
sb

c

Ldf
∼ F1(τ

Ldf

sb
c

), (3.4)

where F1(x) goes like 1/x for x < 1.

3.2.2 The Corral analysis

As mentioned above BCDS constructed the probability distribution P (τ, L, sc) by sampling from

the different cells. However, the number of earthquakes per cell is a highly variable quantity proven

by the fact that distribution of epicenters is a fractal set. Álvaro Corral [142, 143] looked into this

heterogeneity in great detail. Corral constructed different probability distributions Px,y(τ, L, sc)

for different cells (the reference position of a L × L cell being given by coordinates x,y). The

relation with the BCDS probability distribution being given by [143]:

P (τ, L, sc) ∝
∑

∀xy

∫

Px,y,t(τ, L, sc)Rx,y,L,sc
(t)dt, (3.5)

where Rx,y,L,sc
(t) is the instantaneous rate of shock occurrence in the cell (x,y) at time t such

that time average quantity Rx,y,L,sc
= 〈τ〉−1

x,y,L,sc
. Corral looked into earthquake catalogs from

different parts of the world including Japan, northern Africa and the Southern California region
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(originally studied by BCDS), and was able to scale all the probability distributions Px,y(τ, L, sc)

according to the equation[142]:

P (τ) = RG (Rτ) (3.6)

where all quantities in the above equation are functions of x,y,L and sc. The universal scaling

function G(x) was found to have the form of a generalized Gamma function. A power-law region

x < 1 indicated presence of correlation between consecutive shocks.

3.3 Models

After having investigated the signatures of criticality that are manifested over time in the phe-

nomenon of earthquakes, we look into the modeling aspect. The subject of modeling of seismic

phenomena has, in general many different facets. However, motivated by the scale-free, features

Bak and Tang [144] were among the first to suggest that earthquakes could be modeled in the

paradigm of self-organized criticality. The model suggested by them in [144] and [145] is known

as earthquake model of SOC and is similar to the BTW sandpile model [66] described in Chapter

1. The sites on the square lattice for the sandpile model were identified with segments of a

tectonic plate sliding past another. The variable zi,j at any site (i, j) represented accumulated

local stress due to constant tectonic driving and the critical stress zc represented the maximum

static friction that can be sustained at a segment while sliding. But unlike the BTW sandpile

model, a constant global driving was introduced in these earthquake models. The avalanches and

their sizes were identified with the earthquakes and the energy released therein, respectively.

3.3.1 The Burridge-Knopoff Model

The sandpile models were invoked because they were loosely cellular automata based on the block-

spring picture of earthquake faults. Such a block-spring model was suggested by Burridge and

Knopoff [146] to essentially simulate the stick-slip dynamics of the tectonic plate boundaries. A

prototype of such a model [146–148] is illustrated in Fig. 3.7. The figure shows a one-dimensional

version of the model for a fault-line. The model consists of series of blocks of identical mass m

initially resting on a rough surface. Each block is connected to it’s nearest neighbors through

harmonic springs of strength k1. In addition each block is connected to a movable plate by a set

of “pulling springs” with strength kL. The movable plate is driven with uniform speed v in the

positive X-direction. Let xi denote the position of a block i at a time t. The force on the ith

block due the harmonic couplings is:

F k
i = k1 (xi+1 + xi−1 − 2xi) − kL (xi − vt) . (3.7)
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Figure 3.7: Figure shows a typical spring-block model with k1 and kL as different spring constants
and friction force offered by the surface to the blocks F .

Then the equation of motion is:

mẍi = F k
i − F. (3.8)

Here ‘F ’ is the friction force offered by the rough surface to the block i. The two plates moving

relative to each other with speed v represent the motion of two tectonic plates sliding past each

other and the blocks simulate the dynamics of points of contact between the tectonic plates.

The spring constants k1 and kL mimic the response of actual contact regions to compression and

shear, respectively.

The friction force is a very significant part of the model and is the main mechanism behind

the stick-slip dynamics of the blocks. Almost parallely to Bak et al. [144], Carlson and Langer

[149, 150] made a detailed study of this model taking into consideration the velocity dependence

of the friction, i.e., F = F (ẋi) (to be particular a decaying function). This made the friction

less effective and increased the inertia of the blocks in the sense that fast moving blocks were

less likely to stop. They found each block to slip (until there is sufficient force on it to overcome

maximum static friction) and stick (mainly due to the effect of pull from the springs) quasi-

periodically. They also identified ‘events’ where group of blocks slip almost simultaneously. The

word ‘simultaneously’ is used with the sense of probing in the time-scale of driving due to the

movable plate [149–151]. Such events were identified with earthquakes. A quantity analogous to

the energy released was defined as:

E = c
∑

i

∆xi, (3.9)

where ∆xi refers to the displacement suffered by the ith block during the event and c is a

constant. Such a model produced the Gutenberg-Richter law for intermediate size events. The

very large earthquakes were found to be periodic. The first simulations of a two-dimensional

Burridge-Knopoff model was done by Ostuka[154].

Experiments have also shown dependence of rock friction on velocity to be weak [152, 153]

and different groups [144, 155, 157, 158] ignored such a dependence on velocity to put in the

stick-slip behavior ad-hoc into their models. These models considered a maximum static friction
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Fth. When spring forces F k
i on block i would exceed the threshold value Fth, the block would slip

and when F k
i fell below Fth the block would come to a stop. Although these models were ideally

aimed at modeling the stick-slip process of tectonic segments, these models closely resembled

the laboratory experiments on rice piles. Piles consisted by rice grains of rice with less inertia

(due stickiness or large aspect ratio) exhibited self-organized critical behavior [159].

3.3.2 The Olami-Feder-Christensen Model

In 1992, Zeev Olami, Hans Jacob Feder and Kim Christensen (OFC) derived a non-conservative

continuous cellular automata model from Burridge Knopoff spring-block mechanism. The model

described in [160] is a two-dimensional spring-block setup such that there were four nearest

neighbors to each block (ij). The spring force F k
ij on block (ij) is:

F k
ij = k1 (xi+1,j + xi−1,j − 2xi,j) + k2 (xi,j+1 + xi,j−1 − 2xij) − kL (xi − vt) . (3.10)

If F k
ij exceeds Fth, the block (ij) slips to a fully relaxed position and the whole amount of stress

is distributed to the neighboring blocks:

F k
i±1,j → F k

i±1,j + δF k
i±1,j , F k

i,j±1 → F k
i,j±1 + δF k

i,j±1, F k
i,j → 0.

The stress increments on the neighboring blocks are given by:

δF k
i±1,j =

k1

2k1 + 2k2 + kL
F k

i,j, and

δF k
i,j±1 =

k2

2k1 + 2k2 + kL

F k
i,j.

The situation where kL > 0, the distribution of stress among the system of blocks is non-

conservative so that only a fraction and not the whole amount of the total stress released is

distributed. In an isotropic situation of k1 = k2 = k, the parameter α = k/(4k + kL) determines

the level of non-conservation. Evidently the conservative case corresponds to kL = 0 or α = 1/4.

OFC converted this spring-block model into a discrete time, continuous stress cellular au-

tomata. At every site of a square lattice a continuous variable f represents the accumulated local

stress at that site. The system is globally driven, so that in the inactive state of no avalanches

(earthquakes), the stress at all sites increases uniformly. A site relaxes when fi,j ≥ fc , a pre-

assigned threshold value. In a relaxation the stress at the site is reset to zero and the whole

amount of stress is transferred equally to the neighboring sites:

If fi,j ≥ fc then fi,j → 0 and fn,n → fn,n + αfi,j, (3.11)

where fn,n are the local stress at the four neighboring sites of (ij) and α varies continuously

within the range 0 < α ≤ 1
4

[160]. Consequently, stress values at some neighboring sites may
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Figure 3.8: Surface profiles for the OFC model on a square lattice of size L = 64 for with open
boundary conditions. The average stress per site for α = 0.25 (a) and 0.20 (d), the fraction of avalanche
origins per site for α = 0.25 (b) and 0.20 (e) and the average avalanche size per site for α = 0.25 (c)
and 0.20 (f).

exceed fc which also relax so that a cascade of site relaxations propagates in the system, causing

an avalanche. In the limit of α → 0, the avalanche sizes are small and the system is therefore

in a sub-critical state. On the other hand in the conservative limit of α → 0.25, the avalanches

have all length and time scales. In between, a critical value αc exists so that for α < αc the

system is in a sub-critical state whereas for α > αc the system is in a critical state. Different

values of αc have been suggested as 0.05 [160], around 0.20 [161], equal to 1
4

[162]. It has also
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Figure 3.9: Four examples show the positions of the avalanche origins (shaded circle) and the
corresponding boundaries sites (filled circles) on a 8 × 8 square lattice.

been argued that the avalanche size distribution has a multifractal scaling [163].

3.4 Our Work

We argue that assigning a fixed boundary in the SOC models of earthquakes is rather artificial. In

nature there is no fixed boundary for the earthquakes which absorbs earth’s vibrations, the seismic

waves propagate in all directions till they slowly damp out at long distances. Presence of a fixed

boundary introduces a strong non-uniformity in the system, i.e., all measurable quantities show

strong dependence on the distance from the boundary. This effect is present in both conservative

as well as non-conservative versions of the OFC model, but it is so strong in the latter case

that even arriving at the stationary state becomes very difficult [161]. Surface profiles for the

averaged stress per site 〈f〉, the average fractional number of avalanches 〈e〉 that originates at

each site and average size of the avalanche per site 〈s〉 in the OFC model with fixed boundary in

the conservative case (α = 0.25) and in a non-conservative case (α = 0.20 corresponding to the

case when all couplings in the Burridge-Knopoff model are of same order) are shown in Fig 3.8.

It is therefore desirable that all avalanches are on the same footing with respect to the boundary

and at the same time the origin of the avalanche should be at the deepest interior point of the

system.
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Figure 3.10: Surface profiles for the OFC model on a square lattice of size L = 64 for α = 0.25
with moving boundary conditions, (a) the average stress per site (b) fraction of avalanche origins per
site and (c) average avalanche size per site.

3.4.1 The Moving Boundary Condition

These arguments prompted us to formulate a new boundary condition. Here, a globally fixed

set of lattice sites does not constitute the boundary for all avalanches. In contrast, boundaries

are different for different avalanches depending on the positions of the avalanche origins, and its

position is constantly moved from one avalanche to the other.

First we make the square lattice periodic in both directions to get the topology of a torus.

An arbitrary random distribution of forces fi,j, drawn from a set of independent and identically

distributed random numbers within {0, 1} are assigned at all L2 sites. The maximum force fmax

among all L2 sites is found to be at some specific location (io, jo) and the difference from the

threshold force is estimated: δ = fc − fmax. Forces at all sites are then enhanced by δ so that at

the origin (io, jo) the force reaches the threshold fc. The avalanche then starts from the origin

and a cascade of relaxations propagates away from the origin.

Now, for this avalanche, we select a specific set of lattice sites as the boundary such that

the origin is at the center position with respect to these boundary sites. More precisely, on a

L×L square lattice and with respect to the origin located at (io, jo) the boundary sites form two

transverse rings on the torus defined by one column and one row of lattice sites as (Fig. 3.9):

i = io + L/2 mod(L) and

j = jo + L/2 mod(L). (3.12)

When a site adjacent to the boundary relaxes, it transfers αfi,j force to every non-boundary

neighbor but no force to the neighbor on the boundary. Therefore corresponding to each boundary
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Figure 3.11: (a) Scaling of the times to reach the steady state for different system sizes
L=64(black), 128(red), 256(green) and 512(blue). The values of z and β has been found to be 2
and 2.28, respectively. (b) The plot of the average avalanche size 〈s〉 (circles) and the avalanche
duration 〈T 〉 with system size.

neighbor αfi,j disappears from the system and in this way the system looses force. Since the

system is otherwise periodic in all directions all lattice sites are equivalent. Consequently all

avalanches are also equivalent since all of them grow in similar surroundings. In a way this is

similar to elimination of surface effects in a finite size system. Surface profiles for the averaged

force per site 〈f〉, number of avalanche origins at each site 〈e〉 and average size of the avalanche

per site 〈s〉 show uniform flat surfaces (Fig. 3.10) but within a very small fluctuation for all sites

within the lattice L × L.

Since in a single relaxation, the force at the site is reduced to zero, it creates the possibility

that more than one site (typically two) can reach the threshold simultaneously. However, such

situations occur with very low probability and in these cases we choose randomly one of the sites

as the origin and construct boundaries with respect to this site but relaxation starts from both

the unstable sites. Since the forces are continuously varying real numbers, the precision of the

numbers is important as observed in [164]. To ensure that the system has indeed reached the

stationary state, we calculated the average avalanche size 〈s(L)〉 for every 10000 avalanches and

monitored its variation with time. This quantity first grows with time but eventually saturates.

Repeating this calculation for different system sizes, it is observed that the relaxation time grows

as Lz with z = 2 as shown in Fig. 3.11(a).
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Figure 3.12: The avalanche size distributions for three different system sizes L = 64 (circles), 128
(squares) and 256 (triangles) have been plotted on a double logarithmic scale in (a). The finite size
scaling of the same data is shown in (b).

3.4.2 Results

We concentrate on the case α = 1/4 where stress is locally conserved. The avalanche size s is

the total number of relaxations in an avalanche and represents the total energy release in our

model earthquake. Let D(s) be the probability density for a randomly selected avalanche to have

a size between s and s + ds. While for the infinitely large system size the distribution should

indeed be a simple power-law; for the finite size systems, a finite size scaling of the distribution

is required (the following relation can obtained by recasting the ansatz in Eq. (1.19)):

D(s) = L−µH(s/Lν), (3.13)

where the scaling function H(x) ∼ x−1−b for x → 0 and for x >> 1, H(x) decreases faster than

a power-law so that, b = µ/ν − 1. The system size dependence of the average avalanche size

and durations are observed (Fig. 3.11(b)) to be 〈s(L)〉 ∼ Lβ with β = 2.28 (the value of β is

also verified from Fig. 3.11(a)) and 〈T (L)〉 ∼ L0.63. This shows that the avalanche dynamics is

sub-diffusive. We believe that this is due to fact that force is always reset to zero in a relaxation

which initiates more relaxations and thus increases the size of the avalanche.

In Fig. 3.12(a) we show the plot of avalanche size distribution for three different system sizes

L = 64, 128 and 256 on the double logarithmic scale. All of them have very large portions of

straight regions starting from very small sizes to the cut-off sizes. A scaling of the data with an

excellent data collapse is shown in Fig. 3.12(b) yielding the values of ν = 3.02 and µ = 3.78

giving b ≈ 0.26. Such a good power-law behavior as well as the excellent finite size scaling have

been achieved only due to the moving boundary condition where all lattice sites as well as the
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Figure 3.13: (a) The waiting time distributions P (τ, L, sc) for different systems sizes L and minimal
avalanche sizes sc: L = 64 (circle), 128 (square), 256 (triangle), sc = 0 (black), 8 (red), 64 (blue) and
512 (magenta). (b) Scaling of the waiting time distributions by the Corral method. The continuous
line is the best fit by the functional form in Eq. (3.14).

avalanches are equivalent and have not been observed in fixed boundary cellular automata models

of earthquakes before [160, 161].

Since we have assumed that forces at all sites increase uniformly at unit rate, the time difference

between successive avalanches is exactly equal to δ. With this definition, the recurrence time

distribution (RTD) P (τ, L, sc) has been calculated for different system sizes L as well as different

sc values. The plots are shown in Fig. 3.13(a). The effects of sc and L on RTD are competitive.

For sc = 0, the RTD is simply the distribution of force increments δ only. Since the probability

of occurrence of an avalanche of size at least sc decreases with sc, for a fixed L the recurrence

time increases with increasing sc. On the other hand for a fixed sc, since the maximum of the

avalanche sizes increases with L, the probability of occurrence of an avalanche of size at least sc

increases with increasing L. Consequently the recurrence time decreases with increasing L.

In Fig. 3.13(b) we show an unified scaling of twelve different plots with the minimal value of

the avalanche sizes measured sc = 0, 8, 64 and 512 for three different system sizes L = 64, 128

and 256. Logarithmic binning is used for coarse-graining of the data. The average waiting time

〈τ〉L,sc
is calculated for each plot. Following Eq. (3.6) we then scale every plot with corresponding

〈τ〉L,sc
= 1/R and observe an excellent collapse of all twelve plots. This confirms the Corral

scaling in our model. We tried to verify the Corral scaling form:

G(x) ∼ x−a1 exp(−a2x
a3), (3.14)

and obtained a1 = 0.003, a2 = 1.02 and a3 = 0.99 compared to a1 = 0.33, a2 = 0.63
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Figure 3.14: Scaling of the waiting time distribution by the BCDS method. Symbols used for: L =
64 (circle), 128 (square), 256 (triangle) and for sc = 8 (red), 64 (blue) and 512 (magenta). Values of
the scaling exponents used are df=1.67 and b=0.29. The continuous line is the best fit by the functional
form in Eq. (3.14).

and a3 = 0.98 observed in [142]. The exponential tail in G(x) is consistent with the Gamma

distribution observed by Corral but the observed power-law decay component for small values of

waiting times is rather absent in our model.

To verify whether BCDS scaling is valid for our model, we plotted P (τ, L, sc)(s
b
c/L

df ) vs.

τLdf /sb
c (shown in Fig. 3.14) and obtained a scaling form similar to Eq. (3.4). Here also we see

a very good collapse of the nine sets of data for three system sizes L = 64, 128 and 256 and for

sc = 8, 64 and 512. The scaling exponents that gave the best collapse were tuned to df = 1.67

and b = 0.29. The best fit with the functional form in Eq. (3.14) gives a1 = 0.001, a2 = 3.21

and a3 = 0.99 again showing an exponential tail similar to that obtained from real data analysis

[142] but without any power-law component.

We therefore conclude that both the scaling forms used by Corral as well as BCDS are valid

for scaling of the RTD data in our model. The scaling functions in both cases were observed

to be very close to simple exponential decay and the power-law part representing the RTD for

small values of the recurrence times turned out to be absent. This result may also be compared

with two recent analytical calculations: (i) a pure exponential decay of the RTD [165] (ii) an

approximate unified law compatible with the empirical observations incorporating the Omori law

[166].
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Figure 3.15: (a) The average recurrence time 〈τ〉L,sc has been plotted for different values of sc for
various system sizes; (b) 〈τ〉L,sc multiplied by the system size dependent factor Ldf is plotted against sc.
On increasing system size the plot approaches to the variation mentioned in Eq. (3.15) with b = 0.30.

For Corral’s analysis it is the single parameter scaling i.e., the mean recurrence time 〈τ〉L,sc
.

However this parameter in turn also depends jointly on the another two competitive parameters

of the distribution, namely the system size L and the avalanche size cut-off sc in the following

way:

〈τ〉L,sc
∝ sb

c

Ldf
. (3.15)

To check if it is really true we plotted 〈τ〉L,sc
Ldf with respect to sc for L = 32, 64, 128 and 256

using df = 1.67 in Fig. 3.14. A nice collapse of the data for the four different system sizes are

observed for small and intermediate values of sc. Collapse of the data between two successive

system sizes increased with the system size. The slope of the curve in the longest straight region

corresponds to b = 0.30.

Finally, we studied the OFC model using values of α < 1/4 again on a square lattice of size

L using open but moving boundary condition. To our surprise we see that the dynamics become

periodic after a short relaxation time of the order of L2. This is checked by looking at the

‘hamming distance’. Starting from a random distribution of forces as before we skip some 10L2

initial avalanches and store the force configuration in an array fstore. After that, at the end of

every avalanche, we calculated the maximal site difference max|fi,j−fstore(i, j)| and measure the

time when this maximal difference becomes less than a small number ǫ = 10−12. The periodic

time is of the order of L2 but less than it, and found to depend on the initial distribution of force

values.
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3.5 Conclusion

To summarize, we have studied in a model, the scale invariance properties observed in the real

data of earthquakes over last several years by different groups. More specifically, we studied a self-

organized critical model of earthquakes using a square lattice cellular automaton. Using a moving

boundary condition we could eliminate all boundary effects. We first observe that the avalanche

size distribution of this model follow excellent finite size scaling. Further, the recurrence time

distribution was analyzed in two ways, i.e., using Corral as well as BCDS scalings. We observe

that our simulated data of the RTD support both scalings very well which leads us to conclude

that the mean recurrence time is actually a joint function of both the system size as well as the

avalanche size cut-off as used to measure the waiting times.



4 Econophysics of Wealth Distributions

4.1 Introduction

Of all systems present in nature the society is perhaps one of the most complex ones. While

conventional physical systems follow some universal laws there is an apparent lawlessness in the

socio-economic systems. However, in Chapter 1 we described some recent research work which

leads to the fact that even in such systems emergent behavior can be found which are suitably

characterized by statistical laws. In this connection we discussed the Pareto law. In this chapter,

based on [167], we look into this aspect in greater detail and we try to develop an understanding

at a certain level by studying three different yet related models which try to explain the nature

of wealth distribution in societies. The models we discuss here are mostly concerned with agents

who trade amongst themselves according to certain rules. The features of real systems such as

rationality of agents or the influence of the environment are treated by incorporating stochasticity.

Income and wealth are related economic quantities. However, the nature of these economic

variables are different. While the former is characterized as stock, the latter is characterized as

flow. Different members in a society possess different amounts of wealth. Individual members

often make economic transactions (income of an individual being such a mode of transaction) with

other members of the society. Therefore in general the wealth of a member fluctuates with time

and this is true for all other members of the society as well. Over a reasonably lengthy time interval

of observation, which is small compared to the inherent time scales of the economic society this

situation may be looked upon as a stationary state which implies that statistical properties like

the individual wealth distribution, mean wealth, its fluctuation etc. are independent of time. In

1897 Vilfredo Pareto published [12] his findings about the distribution of income across different

European countries. Pareto observed that the individual income (m) distribution in a society is

characterized by a power-law tail like: P (m) ∼ m−(1+ν). The value of ν was found to lie around

1.5. More recently, several groups have investigated the nature of distributions of wealth and

income in different countries across the globe. These empirical studies [168–171] have indeed

confirmed that the nature of high-income distribution is a power-law with the Pareto exponent

ν varying across different scenarios. Although most of these studies were done with data from

countries with capitalist economies like the USA,Japan or UK, Pareto law was observed in a more

controlled economy like that of India [172]. The Pareto law, however, describes the distribution in

66
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Figure 4.1: Plots of cumulative probability of income vs. income in the United States of America
for different years. The variable on the horizontal axis is actually the income scaled by the average
income. The average incomes are indicated in k$ beside the corresponding years. This figure is courtesy
of Silva et al. [178] where the authors analyzed the data on personal income distribution compiled by
the Internal Revenue Service, USA from the tax returns in the USA for the period 1983-2001.

the high-income range. The distribution in the low and middle-income range (comprising of over

90% of the total population) is found to be described by distributions like log-normal [173–177]or

exponential distribution [169, 171, 179]. In Fig. 4.1 the distribution of incomes in the USA are

shown for different years. The two different regions become evident from the plot.

4.2 Recent Models of Wealth Distributions

Models of wealth distributions aim to produce a stationary distributions with a power-law tail. This

presents a scope within the viewpoint of non-equilibrium statistical physics where the paradigm

of power-laws in stationary state of systems (which are out of equilibrium) is already present

[20]. The models which we discuss in this chapter belong to a class of models popularly known as

asset-exchange models. Such a model considers a society to be composed of N individuals where

each of them possess wealth (or money) mi(t), i = 1, N at a certain time t. The distribution

of wealth in this society evolves through mutual economic transactions taking place between

different pairs of individuals. In a typical interaction at a certain time step one individual ‘j’
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provides goods or services to another individual ‘i’ against a payment of ∆m. By this process

the wealth of i and j changes as:

mi(t + 1) = mi(t) − ∆m

mj(t + 1) = mj(t) + ∆m. (4.1)

However, the total amount of wealth possessed by the two individuals remains conserved during

the transaction process,

mi(t + 1) + mj(t + 1) = mi(t) + mj(t). (4.2)

An analogy [180] can be drawn with this exchange mechanism with the scattering process that

takes place in gases or particle-suspensions in fluids where two molecules or atoms interact via an

elastic or in-elastic collision and this has encouraged explanations [119] similar to kinetic theory

of gases for the stationary wealth distributions generated by models.

All the models we discuss below can be cast in the form of the rule (4.1) and hence obey the

conservation law described in Eq. (4.2). To be particular we report detailed simulation results

on three models of wealth distribution. These models are: (i) the model of Drăgulescu and

Yakovenko (DY) [119] which gives an exponential decay of the wealth distribution, (ii) the model

of Chakraborti and Chakrabarti (CC) [120] with a constant global saving propensity giving a

Gamma distribution for the wealth distribution and (iii) the model of Chatterjee, Chakrabarti

and Manna (CCM) [121] with a distribution of quenched individual saving propensities giving a

Pareto law for the tail of the wealth distribution.

4.2.1 The Drăgulescu-Yakovenko (DY) Model

In this model at any instant of time two randomly selected individuals i and j, (i 6= j) make

transactions by a random bipartitioning of their total wealth mi +mj and then receiving one part

each:

mi(t + 1) = ǫ(t)(mi(t) + mj(t))

mj(t + 1) = (1 − ǫ(t))(mi(t) + mj(t)). (4.3)

Here ǫ(t) is the t-th random fraction with a uniform distribution drawn for the t-th transaction.

The system dynamically evolves to a stationary state which is characterized by a time independent

probability distribution Prob(m) of wealth irrespective of the details of the initial distribution of

wealth to start with. Typically in our simulations a fixed amount of wealth is assigned to all

members of the society, i.e. Prob(m, t = 0) = δ(m − 〈m〉). The model described so far

is precisely the DY model in [119]. The stationary state wealth distribution for this model is
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Figure 4.2: The three probability densities of wealth distribution, namely Prob1(m) (solid line),
Prob2(m) (dashed line) and Prob(m) (dot-dashed line) are plotted with wealth m for N = 256 in (a)
for the DY model and in (b) for the CC model for λ = 0.35. The excellent overlapping of all three
curves indicate that both the DY and CC models are ergodic as well as self averaging.

[119, 182, 187]:

Prob(m) =
1

〈m〉 exp(−m/〈m〉). (4.4)

Typically 〈m〉 is chosen to be unity without any loss of generality.

The appearance of the Boltzmann-Gibbs distribution (Eq. (4.4)) as the stationary wealth

distribution in the DY Model is a consequence of the rule (4.3). Rule (4.3) is a very special form

of rule (4.1) where there is time-reversal symmetry i.e., during the exchange process the probability

of transfer of amount ∆m (rule (4.1)) from one individual i to another individual j is the same

as probability of transfer of ∆m from j to i. Historically, asset-exchange models first appeared

in physics literature in Ref. [183]. However, the models considered in [183] did not preserve

time reversal symmetry and in fact did not yield any stationary distribution like the Boltzmann

distribution. The models resulting in the process of aggregation of wealth by few members in

a society was shown to obey scaling relations similar to phenomenon of aggregation of particles

forming clusters [186]. Such a model for wealth distribution, called the Inequality Process was

also considered by sociologist John Angle [184, 185]. The other two models that we describe

below although do not obey time-reversal symmetry, produce stationary wealth distributions. On

the theoretical side open economies have also been considered [180] where interaction of agents

can cause increase in the wealth of the two agents thus violating Eq. (4.2).
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Figure 4.3: For the CC model with N = 256 and λ = 0.35 these plots show the functional fits of
the wealth distribution in (a) and the variation of the most probable wealth mp(λ) in (b). In (a) the
simulation data of Prob(m) is shown by the solid black line where the fitted Gamma function of Eq.
(4.7) is shown by the dashed line. In (b) the mp(λ) data for 24 different λ values denoted by circles
is fitted to the Gamma function given in Eq. (4.8) (solid line). The thin line is a comparison with the
mp(λ) values obtained from the analytical expression of a(λ) and b(λ) in [188].

4.2.2 The Chakraborti-Chakrabarti (CC) Model

A fixed global saving propensity is introduced in the CC model [120]. During the pairwise

economic transaction each member saves a fixed fraction λ of his wealth [181]. The total sum

of the remaining wealth of both the traders is then randomly partitioned and obtained by the

individual members as follows:

mi(t + 1) = λmi(t) + ǫ(t)(1 − λ)(mi(t) + mj(t))

mj(t + 1) = λmj(t) + (1 − ǫ(t))(1 − λ)(mi(t) + mj(t)). (4.5)

The stationary state wealth distribution is an asymmetric distribution with a single peak. The

distribution vanishes at m = 0 as well as for large m values. The most probable wealth mp(λ)

increases monotonically with λ and the distribution tends to the delta function again in the limit

of λ → 1 irrespective of the initial distribution of wealth.

4.2.3 The Chatterjee-Chakrabarti-Manna (CCM) Model

In the third CCM model different members have their own fixed individual saving propensities

and therefore λi(i = 1, N) is a quenched variable in the model. Economic transactions therefore
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Figure 4.4: The wealth distribution Prob(m) in the stationary state for the CCM model for a single
initial configuration of saving propensities {λi} with N=256 is shown by the solid line. Also the wealth
distributions of the individual members with seven different tagged values of λtag are also plotted on the
same curve with dashed lines. This shows that the averaged (over all members) distribution Prob(m)
is the convolution of wealth distributions of all individual members.

take place following these equations:

mi(t + 1) = λimi(t) + ǫ(t)[(1 − λi)mi(t) + (1 − λj)mj(t)]

mj(t + 1) = λjmj(t) + (1 − ǫ(t))[(1 − λi)mi(t) + (1 − λj)mj(t)] (4.6)

where λi and λj are the saving propensities of the members i and j. The stationary state wealth

distribution shows a power-law decay with a value of the Pareto exponent ν ≈ 1 [121].

4.3 Analysis and Discussions

Below we present the detailed numerical evidence to argue that while the first two models are

ergodic and self-averaging, the third model is not. This makes the third model difficult to study

numerically.

We simulated DY model with N = 256, 512 and 1024. Starting from an initial equal wealth

distribution Prob(m) = δ(m − 1) we skipped some transactions corresponding to a relaxation

time t× to reach the stationary state. Typically t× ∝ N . In the stationary state we calculated

the three different probability distributions, namely: (i) the wealth distribution Prob1(m) of an

arbitrarily selected tagged member (ii) the overall wealth distribution Prob2(m) (averaged over

all members of the society) on a long single run (single initial configuration, single sequence of
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Figure 4.5: The individual member’s wealth distribution in the CCM model. A member is tagged
with a fixed saving propensity λtag=0.05 in (a) and 0.999 in (b) for N=256. In the stationary state the
distribution Prob1(m) is asymmetric in (a) and is fitted to a Gamma function. However for very large
λ the distribution in (b) is symmetric and fits very nicely to a Gaussian distribution.

random numbers) and (iii) the overall wealth distribution Prob(m) averaged over many initial

configurations. In Fig. 4.2(a) we show all three plots for N = 256 and observe that overlap of

these three plots is excellent, i.e., these distributions are same. This implies that the DY model

is ergodic as well as self-averaging.

Similar calculations are done for the CC model as well (Fig. 4.2(b)). We see a similar collapse

of the data for the same three probability distributions. This leads us to conclude again that

the CC model is also ergodic and self-averaging. Further we fit in Fig. 4.3(a) the CC model

distribution Prob(m) using a Gamma function as cited in [188] as:

Prob(m) ∼ ma(λ) exp(−b(λ)m) (4.7)

which gives satisfactory non-linear fits by for all values of λ in the range between say 0.1 to 0.9.

Once fitting is done the most-probable wealth is estimated by the relation: mp(λ) = a(λ)/b(λ)

using the values of fitted parameters a(λ) and b(λ). Functional dependence of a and b on λ are

also predicted in [188]. We plot mp(λ) so obtained with λ for 24 different values of λ in Fig.

4.3(b). We observe that these data points fit very well to another Gamma function as:

mp(λ) = Aλα exp(−βλ). (4.8)

The values of A ≈ 1.46, α ≈ 0.703 and β ≈ 0.377 are estimated for N = 256, 512 and 1024 and

we observe a concurrence of these values up to three decimal places for the three different system

sizes. While mp(0) = 0 from Eq. (4.8) is consistent, mp(1) = 1 implies A = exp(β) is also

consistent with estimated values of A and β. Following [188] we plotted mp(λ) = 3λ/(1 + 2λ)
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Figure 4.6: (a) The mean wealth of a tagged member who has the maximal saving propensity is
plotted as a function of time for four different values of λmax. In (b) this data is scaled to obtain the
data collapse.

in Fig. 4.3(b) for the same values of λ and observe that these values deviate from our points for

the small values of λ.

However, for the CCM model many inherent structures are observed. We argue that this

model is neither ergodic nor self-averaging. For a society of N = 256 members a set {0 ≤ λi <

1, i = 1, N} of quenched individual saving propensities are assigned, drawing these numbers from

an independent and identical distribution of random numbers. The system then starts evolving

with random pairwise conservative exchange rules cited in Eq. (4.6). First we reproduced the

Prob(m) vs. m curve given in [121] by averaging the wealth distribution over 500 uncorrelated

initial configurations. The data looked very similar to that given in [121] and the Pareto exponent

ν is found to be very close to 1.

Next we plot the same data for a single quenched configuration of saving propensities as shown

in Fig. 4.4. It is observed that the wealth distribution plotted by the continuous solid line is

far from being a nice power-law as observed in [121] for the configuration averaged distribution.

This curve in Fig. 4.4 has many humps, especially in the large wealth limit. To explain this we

made further simulations by keeping track of the wealth distributions of the individual members.

We see that the individual wealth distributions are significantly different from being power-laws,

they have single peaks as shown in Fig. 4.5. For small values of λ, the Prob1(m) distribution is

asymmetric and has the form of a Gamma function similar to what is already observed for the

CC model (Fig. 4.5(a)). On the other hand as λ → 1 the variation becomes more and more

symmetric which finally attains a simple Gaussian function (Fig. 4.5(b)). The reason is for small

λ the individual wealth distribution does feel the presence of the infinite wall at m = 0 since no

debt is allowed in this model, where as for λ → 1 no such wall is present and consequently the

distribution becomes symmetric. This implies that the wealth possessed by an individual varies
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Figure 4.7: In the stationary state the mean value of the wealth of the member with maximum
saving propensity λmax is plotted with λmax. This value diverges as λmax → 1 for N = 64 (circle), 128
(square), 256 (triangle up), 512 (diamond) and 1024 (triangle down). (b) This data is scaled to obtain
a data collapse of the three different sizes.

within a limited region around an average value and certainly the corresponding phase trajectory

does not explore the whole phase space. Therefore we conclude that the CCM model is not

ergodic.

Seven individual wealth distributions have been plotted in Fig. 4.4. corresponding to six top

most λ values and one with somewhat smaller value. We see that top parts of these Prob1(m)

distributions almost overlap with the Prob2(m) distribution. This shows that Prob2(m) distribu-

tion is truly a superposition of N different Prob1(m) distributions. In the limit of λ → 1, large

gaps are observed in the Prob2(m) distribution due to slight differences in the λ values of the

corresponding individuals. These gaps remain there no matter whatever large sample size is used

for the Prob2(m) distribution.

We further argue that even the configuration averaging may be difficult due to very slow

relaxation modes present in the system. To demonstrate this point we consider the CCM model

where the maximal saving propensity λmax is continuously tuned. The N -th member is assigned

λmax and all other members are assigned values {0 ≤ λi < λmax, i = 1, N − 1}. The average

wealth 〈m(λmax)〉/N of the N -th member is estimated at different times for N = 256 and they

are plotted in Fig. 4.6(a) for four different values of λmax. It is seen that as λmax → 1 it takes

increasingly longer relaxation times to reach the stationary state and the saturation value of the

mean wealth in the stationary state also increases very rapidly. In Fig. 4.6(b) we made a scaling

of these plots like

[〈m(λmax)〉/N ](1 − λmax)
0.725 ∼ G[t(1 − λmax)]. (4.9)

This implies that the stationary state of the member with maximal saving propensity is reached
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after a relaxation time t× given by

t× ∝ (1 − λmax)
−1. (4.10)

Therefore we conclude that in CCM the maximal λ member takes the longest time to reach the

stationary state where as rest of the members reach their individual stationary states earlier.

This observation poses a difficulty in the simulation of the CCM model. Since this is a problem

of quenched disorder it is necessary that the observables should be averaged over many indepen-

dent realizations of uncorrelated disorders. Starting from an arbitrary initial distribution of mi

values one generally skips the relaxation time t× to reach the stationary state and then collect

the data. In the CCM model the 0 ≤ λi < 1 is used. Therefore if M different quenched disorders

are used for averaging it means the maximal of all M ×N λ values is around 1−1/(MN). From

Eq. (4.10) this implies that the slowest relaxation time grows proportional to MN . Therefore

the main message is more accurate simulation one intends to do by increasing the number of

quenched configurations, larger relaxation time t× it has to skip for each quenched configuration

to ensure that it had really reached the stationary state.

Next, we calculate the variation of the mean wealth 〈m(λmax)〉/N of the maximally tagged

member in the stationary state as a function of λmax and for the different values of N . In Fig.

4.7(a) we plot this variation for N = 64, 128, 256, 512 and 1024 with different symbols. It is

observed that larger the value of N the 〈m(λmax)〉/N is closer to zero for all values of λmax

except for those which are very close to 1. For λmax → 1 the mean wealth increases very sharply

to achieve the condensation limit of 〈m(λmax = 1)〉/N = 1.

It is also observed that the divergence of the mean wealth near λmax = 1 is associated with a

critical exponent. In Fig. 4.7(b) we plot the same mean wealth with the deviation (1 − λmax)

from 1 on a double logarithmic scale and observe power-law variations. A scaling of these plots

is done corresponding to a data collapse like:

[〈m(λmax)〉/N ]N−0.15 ∼ F [(1 − λmax)N
1.5]. (4.11)

Different symbols representing the data for the same five system sizes fall on the same curve

which has a slope around 0.76. The scaling function F [x] → x−δ as x → 0 with δ ≈ 0.76. This

means 〈m(λmax)〉N−1.15 ∼ (1 − λmax)
−0.76N−1.14 or 〈m(λmax)〉 ∼ (1 − λmax)

−0.76N0.01. Since

for a society of N traders (1 − λmax) ∼ 1/N this implies

〈m(λmax)〉 ∼ N0.77. (4.12)

This result is therefore different from the claim that 〈m(λmax)〉 ∼ N [121].
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4.4 Conclusion

To summarize, we have revisited the three recent models of wealth distribution in econophysics.

Detailed numerical analysis yields that while the DY and CC models are ergodic and self-averaging,

the CCM model with quenched saving propensities does not seem to be so. In CCM existence of

slow modes proportional to the total sample size makes the numerical analysis difficult.
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[142] Á. Corral, Phys. Rev. Lett. 92, 108501 (2004).



References 84
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